
Hui Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4095472/publications.pdf Version: 2024-02-01

ΗΠΙΜΕΙ

#	Article	IF	CITATIONS
1	Natural paradigms of plant cell wall degradation. Current Opinion in Biotechnology, 2009, 20, 330-338.	6.6	136
2	Lignocellulose deconstruction in the biosphere. Current Opinion in Chemical Biology, 2017, 41, 61-70.	6.1	110
3	Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnology for Biofuels, 2019, 12, 52.	6.2	58
4	Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnology for Biofuels, 2016, 9, 227.	6.2	52
5	Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. Biotechnology for Biofuels, 2020, 13, 15.	6.2	49
6	Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq. Frontiers in Microbiology, 2014, 5, 142.	3.5	48
7	Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass. Biotechnology for Biofuels, 2011, 4, 48.	6.2	47
8	Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing. Biotechnology for Biofuels, 2014, 7, 148.	6.2	45
9	NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review. Frontiers in Plant Science, 2014, 5, 388.	3.6	44
10	Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. Biotechnology for Biofuels, 2012, 5, 20.	6.2	40
11	In situ micro-spectroscopic investigation of lignin in poplar cell walls pretreated by maleic acid. Biotechnology for Biofuels, 2015, 8, 126.	6.2	40
12	Adenylate-Coupled Ion Movement. A Mechanism for the Control of Nodule Permeability to O2 Diffusion. Plant Physiology, 2006, 141, 280-287.	4.8	33
13	Heterologous Expression of Xylanase Enzymes in Lipogenic Yeast Yarrowia lipolytica. PLoS ONE, 2014, 9, e111443.	2.5	32
14	Genomic, Proteomic, and Biochemical Analyses of Oleaginous Mucor circinelloides: Evaluating Its Capability in Utilizing Cellulolytic Substrates for Lipid Production. PLoS ONE, 2013, 8, e71068.	2.5	26
15	Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction. Frontiers in Plant Science, 2016, 7, 24.	3.6	20
16	Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone. Frontiers in Microbiology, 2018, 9, 3276.	3.5	20
17	Cell wall targeted <i>in planta</i> iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice. Plant Biotechnology Journal, 2016, 14, 1998-2009.	8.3	19
18	Transgenic ferritin overproduction enhances thermochemical pretreatments in Arabidopsis. Biomass and Bioenergy, 2015, 72, 55-64.	5.7	17

Hui Wei

#	Article	IF	CITATIONS
19	Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for Agrobacterium-mediated transformation of switchgrass (Panicum virgatum). Plant Methods, 2017, 13, 113.	4.3	16
20	Kinetic Modelling and Experimental Studies for the Effects of Fe2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis. Catalysts, 2018, 8, 39.	3.5	16
21	Identification and Characterization of Five Cold Stress-Related Rhododendron Dehydrin Genes: Spotlight on a FSK-Type Dehydrin With Multiple F-Segments. Frontiers in Bioengineering and Biotechnology, 2019, 7, 30.	4.1	16
22	Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Frontiers in Plant Science, 2015, 6, 315.	3.6	14
23	Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species. Energies, 2016, 9, 685.	3.1	14
24	Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microbial Cell Factories, 2017, 16, 126.	4.0	14
25	Expression of an endoglucanase–cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Biotechnology for Biofuels, 2018, 11, 322.	6.2	13
26	Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion. Biotechnology for Biofuels, 2016, 9, 225.	6.2	12
27	Towards an Understanding of Enhanced Biomass Digestibility by In Planta Expression of a Family 5 Glycoside Hydrolase. Scientific Reports, 2017, 7, 4389.	3.3	9
28	Adenylate Gradients and Ar:O2 Effects on Legume Nodules: I. Mathematical Models. Plant Physiology, 2004, 134, 801-812.	4.8	7
29	Disruption of the Snf1 Gene Enhances Cell Growth and Reduces the Metabolic Burden in Cellulase-Expressing and Lipid-Accumulating Yarrowia lipolytica. Frontiers in Microbiology, 2021, 12, 757741.	3.5	6
30	Adenylate Gradients and Ar:O2 Effects on Legume Nodules. II. Changes in the Subcellular Adenylate Pools. Plant Physiology, 2004, 134, 1775-1783.	4.8	5
31	High titer fatty alcohol production in Lipomyces starkeyi by fed-batch fermentation. Current Research in Biotechnology, 2020, 2, 83-87.	3.7	5
32	Chimeric cellobiohydrolase I expression, activity, and biochemical properties in three oleaginous yeast. Biotechnology for Biofuels, 2021, 14, 6.	6.2	4
33	Ferrous and Ferric Ion-Facilitated Dilute Acid Pretreatment of Lignocellulosic Biomass under Anaerobic or Aerobic Conditions: Observations of Fe Valence Interchange and the Role of Fenton Reaction. Molecules, 2020, 25, 1427.	3.8	3
34	Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (Panicum virgatum L.) biomass. Biotechnology for Biofuels, 2021, 14, 55.	6.2	2
35	Self-Assembling Metabolon Enables the Cell Free Conversion of Glycerol to 1,3-Propanediol. Frontiers in Energy Research, 2021, 9, .	2.3	1

³⁶ An Improved Leaf Protoplast System for Highly Efficient Transient Expression in Switchgrass (Panicum) Tj ETQq0 0 0 rgBT /Overlock 10 T

#	Article	IF	CITATIONS
37	Connecting Microbial Genotype with Phenotype in the Omics Era. Methods in Molecular Biology, 2020, 2096, 217-233.	0.9	ο