
Hiromitsu Kato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4095396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrically driven single-photon source at room temperature in diamond. Nature Photonics, 2012, 6, 299-303.	15.6	291
2	Ultra-long coherence times amongst room-temperature solid-state spins. Nature Communications, 2019, 10, 3766.	5.8	179
3	n-type doping of (001)-oriented single-crystalline diamond by phosphorus. Applied Physics Letters, 2005, 86, 222111.	1.5	172
4	Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Scientific Reports, 2016, 6, 31585.	1.6	150
5	The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD. Diamond and Related Materials, 2004, 13, 1954-1958.	1.8	148
6	Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces. Applied Physics Letters, 2005, 86, 152103.	1.5	148
7	Plasma-enhanced chemical vapor deposition and characterization of high-permittivity hafnium and zirconium silicate films. Journal of Applied Physics, 2002, 92, 1106-1111.	1.1	130
8	n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. Journal Physics D: Applied Physics, 2007, 40, 6189-6200.	1.3	90
9	Misorientation-angle dependence of boron incorporation into (001)-oriented chemical-vapor-deposited (CVD) diamond. Journal of Crystal Growth, 2011, 317, 60-63.	0.7	90
10	Perfect selective alignment of nitrogen-vacancy centers in diamond. Applied Physics Express, 2014, 7, 055201.	1.1	84
11	Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins. ACS Nano, 2017, 11, 1238-1245.	7.3	82
12	Diamond Schottky-pn diode with high forward current density and fast switching operation. Applied Physics Letters, 2009, 94, .	1.5	77
13	Pure negatively charged state of the NV center in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi>-type diamond. Physical Review B, 2016, 93, .</mml:math 	1.1	77
14	600 V Diamond Junction Field-Effect Transistors Operated at 200\$^{circ}{m C}\$. IEEE Electron Device Letters, 2014, 35, 241-243.	2.2	74
15	High performance of diamond p+-i-n+ junction diode fabricated using heavily doped p+ and n+ layers. Applied Physics Letters, 2009, 94, .	1.5	73
16	Enhancement in emission efficiency of diamond deep-ultraviolet light emitting diode. Applied Physics Letters, 2011, 99, .	1.5	73
17	Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films. Journal of Applied Physics, 2003, 93, 239-244.	1.1	72
18	Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons. Journal of Applied Physics, 2005, 97, 054104.	1.1	71

#	Article	IF	CITATIONS
19	Low specific contact resistance of heavily phosphorus-doped diamond film. Applied Physics Letters, 2008, 93, .	1.5	68
20	Tunable light emission from nitrogen-vacancy centers in single crystal diamond PIN diodes. Applied Physics Letters, 2013, 102, .	1.5	62
21	Diamond Junction Field-Effect Transistors with Selectively Grown n\$^{+}\$-Side Gates. Applied Physics Express, 2012, 5, 091301.	1.1	61
22	Diamond foam electrodes for electrochemical applications. Electrochemistry Communications, 2013, 33, 88-91.	2.3	57
23	Selective Growth of Buried n+Diamond on (001) Phosphorus-Doped n-Type Diamond Film. Applied Physics Express, 2009, 2, 055502.	1.1	55
24	Negative electron affinity of diamond and its application to high voltage vacuum power switches. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1961-1975.	0.8	53
25	High-Efficiency Excitonic Emission with Deep-Ultraviolet Light from (001)-Oriented Diamondp-i-nJunction. Japanese Journal of Applied Physics, 2006, 45, L1042-L1044.	0.8	52
26	Electrical characterization of diamond Pi <scp>N</scp> diodes for high voltage applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2035-2039.	0.8	52
27	Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diamond and Related Materials, 2012, 27-28, 19-22.	1.8	51
28	High-Temperature Operation of Diamond Junction Field-Effect Transistors With Lateral p-n Junctions. IEEE Electron Device Letters, 2013, 34, 1175-1177.	2.2	51
29	N-type control of single-crystal diamond films by ultra-lightly phosphorus doping. Applied Physics Letters, 2016, 109, .	1.5	49
30	Deterministic Electrical Charge-State Initialization of Single Nitrogen-Vacancy Center in Diamond. Physical Review X, 2014, 4, .	2.8	41
31	Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour. Scientific Reports, 2018, 8, 6687.	1.6	41
32	Carrier compensation in (001) n-type diamond by phosphorus doping. Diamond and Related Materials, 2007, 16, 796-799.	1.8	40
33	Field emission from reconstructed heavily phosphorus-doped homoepitaxial diamond (111). Applied Physics Letters, 2006, 88, 212114.	1.5	39
34	Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond. Applied Physics Letters, 2014, 105, .	1.5	39
35	Fabrication of bipolar junction transistor on (001)-oriented diamond by utilizing phosphorus-doped n-type diamond base. Diamond and Related Materials, 2013, 34, 41-44.	1.8	38
36	Tuned NV emission by in-plane Al-Schottky junctions on hydrogen terminated diamond. Scientific Reports, 2014, 4, 3634.	1.6	36

#	Article	IF	CITATIONS
37	Normally-Off Diamond Junction Field-Effect Transistors With Submicrometer Channel. IEEE Electron Device Letters, 2016, 37, 209-211.	2.2	36
38	Characterization of specific contact resistance on heavily phosphorus-doped diamond films. Diamond and Related Materials, 2009, 18, 782-785.	1.8	35
39	Origin of photoluminescence around 2.6–2.9 eV in silicon oxynitride. Applied Physics Letters, 2001, 79, 1995-1997.	1.5	34
40	Diamond Schottkyâ€pn diode without tradeâ€off relationship between onâ€resistance and blocking voltage. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2105-2109.	0.8	34
41	Electrical excitation of silicon-vacancy centers in single crystal diamond. Applied Physics Letters, 2015, 106, .	1.5	33
42	Electrical properties of lateral p–n junction diodes fabricated by selective growth of n ⁺ diamond. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1761-1764.	0.8	32
43	Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates. Applied Physics Express, 2015, 8, 104103.	1.1	30
44	Electrical and lightâ€emitting properties of homoepitaxial diamond p–i–n junction. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2200-2206.	0.8	29
45	Electrical activity of doped phosphorus atoms in (001) nâ€ŧype diamond. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2195-2199.	0.8	29
46	Diamond electronic devices fabricated using heavily doped hopping p ⁺ and n ⁺ layers. Japanese Journal of Applied Physics, 2014, 53, 05FA12.	0.8	29
47	Asymmetric Phosphorus Incorporation in Homoepitaxial P-Doped (111) Diamond Revealed by Photoelectron Holography. Nano Letters, 2019, 19, 5915-5919.	4.5	29
48	High-Temperature Bipolar-Mode Operation of Normally-Off Diamond JFET. IEEE Journal of the Electron Devices Society, 2017, 5, 95-99.	1.2	27
49	Single crystal diamond membranes for nanoelectronics. Nanoscale, 2018, 10, 4028-4035.	2.8	27
50	Time-resolved photoluminescence study of hydrogenated amorphous silicon nitride. Physical Review B, 2000, 62, 1532-1535.	1.1	26
51	Engineering of Fermi level by <i>nin</i> diamond junction for control of charge states of NV centers. Applied Physics Letters, 2018, 112, .	1.5	26
52	Phosphorusâ€Doped Nanocrystalline Diamond for Supercapacitor Application. ChemElectroChem, 2019, 6, 1088-1093.	1.7	26
53	Homoepitaxial growth and characterization of phosphorus-doped diamond using tertiarybutylphosphine as a doping source. Diamond and Related Materials, 2004, 13, 2117-2120.	1.8	24
54	Electron Emission from a Diamond (111) p–i–n+Junction Diode with Negative Electron Affinity during Room Temperature Operation. Applied Physics Express, 2010, 3, 041301.	1.1	24

#	Article	IF	CITATIONS
55	Homoepitaxial diamond p–n+ junction with low specific on-resistance and ideal built-in potential. Diamond and Related Materials, 2008, 17, 782-785.	1.8	23
56	Heavily phosphorus-doped nano-crystalline diamond electrode for thermionic emission application. Diamond and Related Materials, 2016, 63, 165-168.	1.8	23
57	Growth and characterization of phosphorus-doped diamond using organophosphorus gases. Physica Status Solidi A, 2005, 202, 2122-2128.	1.7	22
58	Strong Excitonic Emission from (001)-Oriented DiamondP-NJunction. Japanese Journal of Applied Physics, 2005, 44, L1190-L1192.	0.8	22
59	Room Temperature Electrically Detected Nuclear Spin Coherence of NV Centres in Diamond. Scientific Reports, 2020, 10, 792.	1.6	22
60	High-Voltage Vacuum Switch with a Diamond p–i–n Diode Using Negative Electron Affinity. Japanese Journal of Applied Physics, 2012, 51, 090113.	0.8	22
61	Negative electron affinity on hydrogen terminated diamond. Physica Status Solidi A, 2005, 202, 2098-2103.	1.7	21
62	Electrical and optical characterization of boron-doped (111) homoepitaxial diamond films. Diamond and Related Materials, 2005, 14, 1964-1968.	1.8	21
63	Growth of phosphorus-doped diamond using tertiarybutylphosphine and trimethylphosphine as dopant gases. Diamond and Related Materials, 2005, 14, 340-343.	1.8	20
64	N-type doping on (001)-oriented diamond. Diamond and Related Materials, 2006, 15, 548-553.	1.8	20
65	Diamond Schottky p–n diode with high forward current density. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2086-2090.	0.8	20
66	Nanometer Scale Height Standard Using Atomically Controlled Diamond Surface. Applied Physics Express, 0, 2, 055001.	1.1	20
67	Energy level of compensator states in (001) phosphorus-doped diamond. Diamond and Related Materials, 2011, 20, 1016-1019.	1.8	20
68	Visible electroluminescence in hydrogenated amorphous silicon oxynitride. Journal of Applied Physics, 2001, 90, 2216-2220.	1.1	19
69	Surface conductive layers on oxidized (111) diamonds. Applied Physics Letters, 2005, 87, 262107.	1.5	19
70	Electron emission from diamond <i>p</i> – <i>i</i> – <i>n</i> junction diode with heavily Pâ€doped <i>n</i> ⁺ top layer. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2073-2078.	0.8	19
71	Carrier transport in homoepitaxial diamond films with heavy phosphorus doping. Japanese Journal of Applied Physics, 2014, 53, 05FP05.	0.8	19
72	Inversion channel mobility and interface state density of diamond MOSFET using N-type body with various phosphorus concentrations. Applied Physics Letters, 2019, 114, .	1.5	19

#	Article	IF	CITATIONS
73	n-type conductivity of phosphorus-doped homoepitaxial single crystal diamond on (001) substrate. Diamond and Related Materials, 2005, 14, 2007-2010.	1.8	18
74	Electrical and light-emitting properties of (001)-oriented homoepitaxial diamond p–i–n junction. Diamond and Related Materials, 2007, 16, 1025-1028.	1.8	18
75	Electrical and light-emitting properties from (111)-oriented homoepitaxial diamond p–i–n junctions. Diamond and Related Materials, 2009, 18, 764-767.	1.8	18
76	Charge state modulation of nitrogen vacancy centers in diamond by applying a forward voltage across a p–i–n junction. Diamond and Related Materials, 2016, 63, 192-196.	1.8	18
77	Thermally induced photoluminescence quenching centre in hydrogenated amorphous silicon oxynitride. Journal of Physics Condensed Matter, 2001, 13, 6541-6549.	0.7	17
78	High-Voltage Vacuum Switch with a Diamond p–i–n Diode Using Negative Electron Affinity. Japanese Journal of Applied Physics, 2012, 51, 090113.	0.8	17
79	Vector Electrometry in a Wide-Gap-Semiconductor Device Using a Spin-Ensemble Quantum Sensor. Physical Review Applied, 2020, 14, .	1.5	17
80	Secondary photoelectron emission experiments on p-, intrinsic, and n-type diamond. Diamond and Related Materials, 2006, 15, 698-702.	1.8	16
81	Mechanisms of several photoluminescence bands in hafnium and zirconium silicates induced by ultraviolet photons. Journal of Applied Physics, 2006, 99, 094106.	1.1	16
82	Multiple phosphorus chemical sites in heavily phosphorus-doped diamond. Applied Physics Letters, 2011, 98, .	1.5	16
83	Reduction of nâ€ŧype diamond contact resistance by graphite electrode. Physica Status Solidi - Rapid Research Letters, 2014, 8, 137-140.	1.2	16
84	Electrical and optical characterizations of (001)-oriented homoepitaxial diamond p–n junction. Diamond and Related Materials, 2006, 15, 513-516.	1.8	15
85	p-type doping by B ion implantation into diamond at elevated temperatures. Diamond and Related Materials, 2006, 15, 157-159.	1.8	15
86	Defects in Yttria-Stabilized Zirconia Induced by Irradiation of Ultraviolet Photons. Japanese Journal of Applied Physics, 2008, 47, 6858.	0.8	15
87	Effect of Ozone Annealing on the Charge Trapping Property of Ta2O5–Si3N4–p-Si Capacitor Grown by Low-pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1999, 38, 6791-6796.	0.8	14
88	Free exciton luminescence from a diamond p–i–n diode grown on a substrate produced by heteroepitaxy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2251-2256.	0.8	14
89	Features of free carrier and exciton recombination, diffusion, and photoluminescence in undoped and phosphorus-doped diamond layers. Diamond and Related Materials, 2015, 57, 9-16.	1.8	14
90	Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer. Japanese Journal of Applied Physics, 2018, 57, 04FR01.	0.8	14

#	Article	IF	CITATIONS
91	Shallow NV centers augmented by exploiting n-type diamond. Carbon, 2021, 178, 294-300.	5.4	14
92	Electron emission suppression from hydrogen-terminated n-type diamond. Diamond and Related Materials, 2008, 17, 986-988.	1.8	13
93	Nonlinear behavior of currentâ€dependent emission for diamond lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1754-1760.	0.8	13
94	Functional nitrogen science based on plasma processing: quantum devices, photocatalysts and activation of plant defense and immune systems. Japanese Journal of Applied Physics, 2022, 61, SA0805.	0.8	13
95	Photoluminescence Analysis of Plasma-deposited Oxygen-rich Silicon Oxynitride Films. Japanese Journal of Applied Physics, 2000, 39, 6587-6593.	0.8	12
96	Field emission from H- and O-terminated heavily P-doped homoepitaxial diamond. Journal of Vacuum Science & Technology B, 2006, 24, 967.	1.3	12
97	Improvement of (001)-oriented diamond p-i-n diode by use of selective grown n+ layer. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2099-2104.	0.8	12
98	Optoelectronic properties of p-diamond/n-GaN nanowire heterojunctions. Journal of Applied Physics, 2015, 118, .	1.1	12
99	Desorption time of phosphorus during MPCVD growth of n-type (001) diamond. Diamond and Related Materials, 2016, 64, 208-212.	1.8	11
100	Temperature dependence of electrical characteristics for diamond Schottky-pn diode in forward bias. Diamond and Related Materials, 2018, 85, 49-52.	1.8	11
101	Characterization of Schottky Barrier Diodes on Heteroepitaxial Diamond on 3C-SiC/Si Substrates. IEEE Transactions on Electron Devices, 2020, 67, 212-216.	1.6	11
102	Ultra-high dynamic range quantum measurement retaining its sensitivity. Nature Communications, 2021, 12, 306.	5.8	11
103	Fabrication of inversion p-channel MOSFET with a nitrogen-doped diamond body. Applied Physics Letters, 2021, 119, .	1.5	11
104	Photo-induced refractive index change in hydrogenated amorphous silicon oxynitride. Journal of Applied Physics, 2002, 91, 6350.	1.1	10
105	Total photoyield experiments on hydrogen terminated n-type diamond. Diamond and Related Materials, 2005, 14, 2019-2022.	1.8	10
106	Isotope effects between hydrogen and deuterium microwave plasmas on chemical vapor deposition homoepitaxial diamond growth. Journal of Applied Physics, 2007, 101, 103501.	1.1	10
107	Electron emission from CVD diamond p–i–n junctions with negative electron affinity during room temperature operation. Diamond and Related Materials, 2011, 20, 917-921.	1.8	10
108	Analysis of selective growth of n-type diamond in lateral p–n junction diodes by cross-sectional transmission electron microscopy. Japanese Journal of Applied Physics, 2014, 53, 05FP01.	0.8	10

#	Article	IF	CITATIONS
109	Dynamic properties of diamond high voltage p–i–n diodes. Japanese Journal of Applied Physics, 2017, 56, 04CR14.	0.8	10
110	Charge-state control of ensemble of nitrogen vacancy centers by n–i–n diamond junctions. Applied Physics Express, 2018, 11, 033004.	1.1	10
111	Effect of laser irradiation during B ion implantation into diamond. Diamond and Related Materials, 2005, 14, 1969-1972.	1.8	9
112	Control of coherence among the spins of a single electron and the three nearest neighbor 13C nuclei of a nitrogen-vacancy center in diamond. Applied Physics Letters, 2015, 106, 153103.	1.5	9
113	Extension of the Coherence Time by Generating MW Dressed States in a Single NV Centre in Diamond. Scientific Reports, 2019, 9, 13318.	1.6	9
114	Inversion channel MOSFET on heteroepitaxially grown free-standing diamond. Carbon, 2021, 175, 615-619.	5.4	9
115	Photoelectrical detection of nitrogen-vacancy centers by utilizing diamond lateral p–i–n diodes. Applied Physics Letters, 2021, 118, .	1.5	9
116	Electrical characterization of homoepitaxial diamond p–n+ junction. Diamond and Related Materials, 2005, 14, 1995-1998.	1.8	8
117	Field emission process of O-terminated heavily P-doped homoepitaxial diamond. Diamond and Related Materials, 2006, 15, 863-865.	1.8	8
118	Exciton-derived Electron Emission from (001) Diamond <i>p</i> – <i>n</i> Junction Diodes with Negative Electron Affinity. Applied Physics Express, 2008, 1, 015004.	1.1	8
119	Enhanced thermionic electron emission from a stacked structure of phosphorusâ€doped diamond with a nitrogenâ€doped diamond surface layer. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2650-2653.	0.8	8
120	Energy Band Profile of Hafnium Silicates Estimated by X-Ray Photoelectron Spectroscopy. Japanese Journal of Applied Physics, 2004, 43, 8199-8202.	0.8	7
121	A 10kV vacuum switch with negative electron affinity of diamond p-i-n electron emitter. , 2012, , .		7
122	Polarizationâ€controlled dressedâ€photon–phonon etching of patterned diamond structures. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2339-2342.	0.8	7
123	Fabrication of diamond lateral p–n junction diodes on (111) substrates. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2548-2552.	0.8	7
124	Electron emission by current injection from nâ€ŧype diamond film surface with negative electron affinity. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2093-2098.	0.8	6
125	Device Design of Diamond Schottky-pn Diode for Low-Loss Power Electronics. Japanese Journal of Applied Physics, 2012, 51, 090116.	0.8	6
126	Maskless Selective Growth Method for p–n Junction Applications on (001)-Oriented Diamond. Japanese Journal of Applied Physics, 2012, 51, 090118.	0.8	6

#	Article	IF	CITATIONS
127	Observation of Interface Defects in Diamond Lateral p-n-Junction Diodes and Their Effect on Reverse Leakage Current. IEEE Transactions on Electron Devices, 2017, 64, 3298-3302.	1.6	6
128	Similarities in the electrical conduction processes in hydrogenated amorphous silicon oxynitride and silicon nitride. Journal of Physics Condensed Matter, 2003, 15, 2197-2205.	0.7	5
129	Ab initio energetics of phosphorus impurity in subsurface regions of hydrogenated diamond surfaces. E-Journal of Surface Science and Nanotechnology, 2006, 4, 124-128.	0.1	5
130	Carrier transport of diamond p ⁺ â€iâ€n ⁺ junction diode fabricated using lowâ€resistance hopping p ⁺ and n ⁺ layers. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 937-942.	0.8	5
131	Diamond semiconductor JFETs by selectively grown n ⁺ -diamond side gates for next generation power devices. , 2012, , .		5
132	Potential of diamond power devices. , 2013, , .		5
133	Carrier transport mechanism of diamond p ⁺ –n junction at low temperature using Schottky–pn junction structure. Japanese Journal of Applied Physics, 2021, 60, 030905.	0.8	5
134	Device Design of Diamond Schottky-pn Diode for Low-Loss Power Electronics. Japanese Journal of Applied Physics, 2012, 51, 090116.	0.8	5
135	Maskless Selective Growth Method for p–n Junction Applications on (001)-Oriented Diamond. Japanese Journal of Applied Physics, 2012, 51, 090118.	0.8	5
136	Energetics of dopant atoms in subsurface positions of diamond semiconductor. Superlattices and Microstructures, 2006, 40, 574-579.	1.4	4
137	Growth and characterization of boron-doped CVD homoepitaxial diamond films. Journal of Crystal Growth, 2007, 299, 235-242.	0.7	4
138	Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Japanese Journal of Applied Physics, 2014, 53, 05FP02.	0.8	4
139	Reverseâ€recovery of diamond pâ€iâ€n diodes. IET Power Electronics, 2018, 11, 695-699.	1.5	4
140	Temperature dependence of diamond MOSFET transport properties. Japanese Journal of Applied Physics, 2020, 59, SGGD19.	0.8	4
141	Electrical properties in silicon oxynitride and silicon nitride prepared by plasma-enhanced chemical vapor deposition. , 0, , .		3
142	n-Type Diamond Growth by Phosphorus Doping. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	2
143	Optoelectronic Devices Using Homoepitaxial Diamond p-n and p-i-n Junctions. , 2009, , 379-398.		2

#	Article	IF	CITATIONS
145	Current enhancement by conductivity modulation in diamond JFETs for next generation low-loss power devices. , 2015, , .		2
146	Diamond microfabrication by imprinting with nickel mold under high temperature. Diamond and Related Materials, 2021, 114, 108294.	1.8	2
147	Distinguishing dislocation densities in intrinsic layers of pin diamond diodes using two photon-excited photoluminescence imaging. Diamond and Related Materials, 2021, 117, 108463.	1.8	2
148	Characterization of hafnium and zirconium silicate films fabricated by plasma-enhanced chemical vapor deposition. , 0, , .		1
149	Structural Defects in Amorphous Silicon Oxynitride and Silicon Nitride. Defect and Diffusion Forum, 2003, 218-220, 39-50.	0.4	1
150	Potential profile evaluation of a diamond lateral p–n junction diode using Kelvin probe force microscopy. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2589-2594.	0.8	1
151	Determination of Current Leakage Sites in Diamond p–n Junction. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900243.	0.8	1
152	Charge state control by band engineering. Semiconductors and Semimetals, 2020, 103, 137-159.	0.4	1
153	Dielectric breakdown in F-doped SiO/sub 2/ films formed by plasma-enhanced chemical vapor deposition. , 0, , .		Ο
154	Electroluminescence in silicon oxynitride. , 0, , .		0
155	Effect of post-nitriding on electrical properties of high-permittivity hafnium and zirconium silicate films. , 0, , .		0
156	Improvement in electrical properties of hafnium and zirconium silicates by postnitriding. Journal of Physics Condensed Matter, 2006, 18, 6009-6016.	0.7	0
157	Field emission from surface-reconstructed phosphorus-doped homoepitaxial diamond (111). , 2006, , .		Ο
158	Electron Emission from Diamond (111) p+-i-n+ Junction Diode. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
159	Light penetration depth dependence of photocarrier life time and the Hall effect in phosphorous-doped and boron-doped homoepitaxial CVD diamond films. Diamond and Related Materials, 2013, 33, 49-53.	1.8	Ο
160	Single photon, spin, and charge in diamond semiconductor at room temperature. , 2013, , .		0
161	High voltage vacuum switch with negative electron affinity of diamond PIN diode emitter. , 2013, , .		0
162	Electron emission from nitrogen-containing diamond with narrow-gap coplanar electrodes. Japanese Journal of Applied Physics, 2014, 53, 05FP08.	0.8	0

#	Article	IF	CITATIONS
163	Investigation of electron emission site of p–i–n diode-type emitters with negative electron affinity. Japanese Journal of Applied Physics, 2014, 53, 05FP07.	0.8	0
164	High voltage vacuum power switch with diamond electron emitters. , 2014, , .		0
165	Progress on diamond PIN diode emitters with negative electron affinity for high-voltage d.c. vacuum switches. , 2015, , .		0
166	Defect luminescence in Diamond and GaN: towards single photon emitting devices. , 2016, , .		0
167	Nearly degenerate ground state of phosphorus donor in diamond. Physical Review Materials, 2020, 4, .	0.9	0