M S Shahid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4095383/publications.pdf

Version: 2024-02-01

50	892	516710 16	501196 28 g-index
papers	citations	h-index	g-index
50 all docs	50 docs citations	50 times ranked	641 citing authors

#	Article	IF	CITATIONS
1	Evolutionary Dynamics of Begomoviruses and Its Satellites Infecting Papaya in India. Frontiers in Microbiology, 2022, 13 , .	3.5	7
2	Interaction of watermelon chlorotic stunt virus with satellites. Australasian Plant Pathology, 2021, 50, 117-128.	1.0	7
3	Interaction of a tomato leaf curl New Delhi virus with a betasatellite enhances symptom severity in field-infected tomato plants. Tropical Plant Pathology, 2021, 46, 169-174.	1.5	O
4	Association of cotton leaf curl Gezira virus with tomato leaf curl betasatellite infecting Carica papaya in Iran. Australasian Plant Disease Notes, 2021, 16, 1.	0.7	7
5	Evidence that leaf curl disease of Malva sylvestris in Iran is associated with cotton leaf curl Gezira virus and associated betasatellite. Journal of Plant Pathology, 2021, 103, 671-672.	1.2	2
6	Association of a monopartite begomovirus and associated betasatellite with yellow vein disease of a weed host, Senna italica Mill. In Oman. VirusDisease, 2021, 32, 378-380.	2.0	2
7	Molecular characterization of the 3′ end of Citrus tristeza virus genome from Oman. Indian Phytopathology, 2021, 74, 1147-1150.	1.2	0
8	Begomovirus Diseases of Ornamental and Fruit Plants: Discoveries and Management Approaches. , 2021, , 381-396.		0
9	Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (<i>Gossypium hirsutum</i>). Plant Biotechnology Journal, 2020, 18, 691-706.	8.3	44
10	Tomato yellow leaf curl virus interaction with betasatellites – a global threat to tomato production. Plant Pathology, 2020, 69, 1191-1192.	2.4	4
11	Squash Leaf Curl Virus: A New World Bipartite Begomovirus Threatening Squash Production in Oman. Plant Disease, 2020, 104, 2533-2533.	1.4	4
12	Molecular and biological characterization of Chilli leaf curl virus and associated betasatellite infecting Cucurbita maxima in Oman. VirusDisease, 2020, 31, 378-382.	2.0	4
13	Next-generation sequencing technologies and plant molecular virology: a practical perspective. , $2020,131-140.$		1
14	Molecular tools for engineering resistance in hosts against plant viruses. , 2020, , 637-647.		0
15	Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Frontiers in Microbiology, 2020, 11, 609376.	3.5	9
16	Molecular and biological characterization of Chilli leaf curl virus and associated Tomato leaf curl betasatellite infecting tobacco in Oman. Virology Journal, 2019, 16, 131.	3.4	18
17	Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease affected tomato in Oman. Scientific Reports, 2019, 9, 16634.	3.3	9
18	Identification of pea leaf distortion virus and Ludwigia leaf distortion betasatellite associated with yellow leaf curl disease of lima bean in Nepal. Australasian Plant Pathology, 2019, 48, 309-312.	1.0	1

#	Article	IF	CITATIONS
19	Identification of Chilli leaf curl virus associated with tomato leaf curl betasatellite infecting Mentha in Oman. Canadian Journal of Plant Pathology, 2019, 41, 291-295.	1.4	4
20	Infection of Urtica incisa with chili leaf curl virus and tomato leaf curl betasatellite in Oman. Journal of Plant Pathology, 2019, 101, 395-395.	1.2	4
21	The Rep proteins encoded by alphasatellites restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana. VirusDisease, 2019, 30, 101-105.	2.0	35
22	Use of the cotton leaf curl Multan alphasatellite as a silencing or expression vector. Acta Virologica, 2019, 63, 36-44.	0.8	0
23	Identification of Tomato Yellow Leaf Curl Virus-IR and Associated Tomato Leaf Curl Betasatellite Infecting Common Bean (<i>Phaseolus vulgaris</i>) in Oman. Plant Disease, 2018, 102, 1864-1864.	1.4	4
24	Evaluation of tomato inbred lines for resistance to the tomato yellow leaf curl disease complex in Oman. Crop Protection, 2018, 110, 91-98.	2.1	14
25	Identification of <i>Mungbean yellow mosaic India virus</i> Infecting Cucumber in Oman. Plant Disease, 2018, 102, 465.	1.4	10
26	Identification of a distinct strain of <i>Cotton leaf curl Gezira virus</i> infecting tomato in Oman. Journal of Phytopathology, 2018, 166, 199-205.	1.0	13
27	Molecular characterization and detection of a novel vitivirus infecting blackberry. Archives of Virology, 2018, 163, 2889-2893.	2.1	4
28	Characterization of Huanglongbing disease associated with acid lime (Citrus aurantifolia Swingle) in Oman. Journal of Plant Pathology, 2018, 100, 419-427.	1.2	1
29	First Report of <i>Chilli leaf curl virus</i> and Tomato leaf curl betasatellite Infecting Watermelon (<i>Citrullus lanatus</i>) in Oman. Plant Disease, 2017, 101, 1063-1063.	1.4	21
30	Identification of <i>Mungbean yellow mosaic Indian virus</i> Associated with Tomato Leaf Curl Betasatellite Infecting <i>Phaseolus vulgaris</i> in Oman. Journal of Phytopathology, 2017, 165, 204-211.	1.0	13
31	Real-time quantitative PCR assay for the quantification of virus and satellites causing leaf curl disease in cotton in Pakistan. Journal of Virological Methods, 2017, 248, 54-60.	2.1	32
32	Molecular characterization of a distinct monopartite begomovirus associated with betasatellites and alphasatellites infecting Pisum sativum in Nepal. Virus Genes, 2017, 53, 300-306.	1.6	6
33	Genomic Characterization and Population Structure of a Badnavirus Infecting Blackberry. Plant Disease, 2017, 101, 110-115.	1.4	15
34	CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing. Frontiers in Plant Science, 2017, 8, 1469.	3.6	34
35	Maintenance of Cotton Leaf Curl Multan Betasatellite by Tomato Leaf Curl New Delhi Virus—Analysis by Mutation. Frontiers in Plant Science, 2017, 8, 2208.	3.6	18
36	CRISPR/Cas9: A Tool to Circumscribe Cotton Leaf Curl Disease. Frontiers in Plant Science, 2016, 7, 475.	3.6	88

#	Article	IF	CITATIONS
37	Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan. PLoS ONE, 2016, 11, e0155520.	2.5	77
38	Characterization of Tomato yellow leaf curl virus and associated alphasatellite infecting Cucurbita maxima in Japan. Journal of General Plant Pathology, 2015, 81, 92-95.	1.0	5
39	First report of a begomovirus and associated betasatellite in Rosa indica and in India. Australasian Plant Disease Notes, 2014, 9, 1.	0.7	16
40	Association of an Alphasatellite with Tomato Yellow Leaf Curl Virus and Ageratum Yellow Vein Virus in Japan Is Suggestive of a Recent Introduction. Viruses, 2014, 6, 189-200.	3.3	19
41	Identification of <i>Tomato yellow leaf curl virus</i> Naturally Infecting Common Bean in Japan. Plant Disease, 2014, 98, 1447-1447.	1.4	5
42	Complete nucleotide sequence of a monopartite Begomovirus and associated satellites infecting Carica papaya in Nepal. Virus Genes, 2013, 46, 581-584.	1.6	22
43	Evaluation of Tomato Hybrids Carrying Tyâ€1 and Tyâ€2 Loci to Japanese Monopartite Begomovirus Species. Journal of Phytopathology, 2013, 161, 205-209.	1.0	24
44	First Report of <i>Bean common mosaic necrosis virus</i> (BCMNV) Infecting Sweet Bean in Nepal. Plant Disease, 2013, 97, 290-290.	1.4	5
45	First report of Mungbean yellow mosaic India virus on Lima bean affected by yellow mosaic disease in Nepal. Australasian Plant Disease Notes, 2012, 7, 85-89.	0.7	11
46	An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. Journal of General Virology, 2011, 92, 706-717.	2.9	160
47	Characterization of begomovirus components from a weed suggests that begomoviruses may associate with multiple distinct DNA satellites. Virus Genes, 2010, 40, 452-457.	1.6	43
48	Pepper leaf curl Lahore virus requires the DNA B component of Tomato leaf curl New Delhi virus to cause leaf curl symptoms. Virology Journal, 2010, 7, 367.	3.4	24
49	Complete nucleotide sequences of cotton leaf curl Rajasthan virus and its associated DNA \hat{l}^2 molecule infecting tomato. Archives of Virology, 2007, 152, 2131-2134.	2.1	46
50	Effect of tomato yellow leaf curl disease on yield, height and chlorophyll of open field grown tomato genotypes in Oman. Vegetos, 0, , 1.	1.5	0