Marcos Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094919/publications.pdf

Version: 2024-02-01

papers citat	ions h-ind	ex g-index
	19 19 times r	

#	Article	IF	CITATIONS
1	NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells. IScience, 2021, 24, 102762.	4.1	11
2	The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. Journal of Experimental Medicine, $2021, 218, \ldots$	8. 5	90
3	Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cellular and Molecular Life Sciences, 2021, 78, 8049-8071.	5.4	23
4	Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell, 2019, 25, 137-148.e6.	11.1	342
5	A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Research, 2019, 29, 221-232.	12.0	48
6	Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nature Structural and Molecular Biology, 2018, 25, 778-786.	8.2	79
7	Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. Journal of Experimental Medicine, 2017, 214, 719-735.	8.5	62
8	A transit-amplifying population underpins the efficient regenerative capacity of the testis. Journal of Experimental Medicine, 2017, 214, 1631-1641.	8 . 5	50
9	The RNA m 6 A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Molecular Cell, 2017, 67, 1059-1067.e4.	9.7	287
10	mRNA $3\hat{a}\in^2$ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature, 2017, 548, 347-351.	27.8	142
11	The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS ONE, 2017, 12, e0179797.	2.5	12
12	Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci. PLoS Genetics, 2014, 10, e1004597.	3.5	116
13	Multiple Epigenetic Mechanisms and the piRNA Pathway Enforce LINE1 Silencing during Adult Spermatogenesis. Molecular Cell, 2013, 50, 601-608.	9.7	170
14	Identification of $3\hat{a} \in ^2$ gene ends using transcriptional and genomic conservation across vertebrates. BMC Genomics, 2012, 13, 708.	2.8	5
15	CPEB2, CPEB3 and CPEB4 are coordinately regulated by miRNAs recognizing conserved binding sites in paralog positions of their 3′-UTRs. Nucleic Acids Research, 2010, 38, 7698-7710.	14.5	25
16	Quantum Dots As Ultrasensitive Nanoactuators and Sensors of Amyloid Aggregation in Live Cells. Journal of the American Chemical Society, 2009, 131, 8102-8107.	13.7	73
17	Models for the recent evolution of protocadherin gene clusters. Biocell, 2008, 32, 9-26.	0.7	1