
Noah H Paulson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced-order structure-property linkages for polycrystalline microstructures based on 2-point statistics. Acta Materialia, 2017, 129, 428-438.	7.9	123
2	Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures. Materials and Design, 2018, 154, 170-183.	7.0	49
3	Feature engineering for machine learning enabled early prediction of battery lifetime. Journal of Power Sources, 2022, 527, 231127.	7.8	43
4	Quantified uncertainty in thermodynamic modeling for materials design. Acta Materialia, 2019, 174, 9-15.	7.9	40
5	Strategies for rapid parametric assessment of microstructure-sensitive fatigue for HCP polycrystals. International Journal of Fatigue, 2017, 104, 231-242.	5.7	37
6	Reduced-order microstructure-sensitive protocols to rank-order the transition fatigue resistance of polycrystalline microstructures. International Journal of Fatigue, 2019, 119, 1-10.	5.7	33
7	Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials. International Journal of Engineering Science, 2019, 142, 74-93.	5.0	31
8	Flame spray pyrolysis optimization via statistics and machine learning. Materials and Design, 2020, 196, 108972.	7.0	19
9	Comparison of statistically-based methods for automated weighting of experimental data in CALPHAD-type assessment. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 68, 101728.	1.6	14
10	Thermodynamics of monoclinic and tetragonal hafnium dioxide (HfO2) at ambient pressure. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 72, 102210.	1.6	14
11	Flame stability analysis of flame spray pyrolysis by artificial intelligence. International Journal of Advanced Manufacturing Technology, 2021, 114, 2215-2228.	3.0	10
12	Uncertainty Quantification in Atomistic Modeling of Metals and Its Effect on Mesoscale and Continuum Modeling: A Review. Jom, 2021, 73, 149-163.	1.9	7
13	Intelligent Agents for the Optimization of Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2021, 13, 17022-17033.	8.0	6
14	Bayesian automated weighting of aggregated DFT, MD, and experimental data for candidate thermodynamic models of aluminum with uncertainty quantification. Materialia, 2021, 20, 101216.	2.7	4
15	Insights from Computational Studies on the Anisotropic Volume Change of Li _{<i>x</i>} NiO ₂ at High States of Charge (<i>x</i> < 0.25). Journal of Physical Chemistry C, 2021, 125, 27130-27139.	3.1	3
16	An efficient approximation of the supercell approach to the calculation of the full phonon spectrum. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 72, 102215.	1.6	1