
## Paolo Zucca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094787/publications.pdf Version: 2024-02-01



Ρλοιο Ζμεελ

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic<br>Diseases. Frontiers in Physiology, 2020, 11, 694.                                                                                        | 1.3 | 833       |
| 2  | The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals, 2019, 12, 11.                                                                                                                                        | 1.7 | 470       |
| 3  | Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms.<br>Molecules, 2014, 19, 14139-14194.                                                                                                            | 1.7 | 354       |
| 4  | Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules, 2016, 21, 1577.                                                                                                                                               | 1.7 | 227       |
| 5  | Allicin and health: A comprehensive review. Trends in Food Science and Technology, 2019, 86, 502-516.                                                                                                                                       | 7.8 | 127       |
| 6  | Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Applied Sciences (Switzerland), 2020, 10, 947.                                                                  | 1.3 | 103       |
| 7  | Supercritical CO <sub>2</sub> Extract of Cinnamomum zeylanicum: Chemical Characterization and Antityrosinase Activity. Journal of Agricultural and Food Chemistry, 2007, 55, 10022-10027.                                                   | 2.4 | 97        |
| 8  | Aflatoxin B1 and M1 Degradation by Lac2 from Pleurotus pulmonarius and Redox Mediators. Toxins, 2016, 8, 245.                                                                                                                               | 1.5 | 95        |
| 9  | Phytotherapeutics in cancer invasion and metastasis. Phytotherapy Research, 2018, 32, 1425-1449.                                                                                                                                            | 2.8 | 88        |
| 10 | Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complementary and Alternative Medicine, 2019, 19, 82.                                         | 3.7 | 73        |
| 11 | Degradation of Alizarin Red S under mild experimental conditions by immobilized<br>5,10,15,20-tetrakis(4-sulfonatophenyl)porphine–Mn(III) as a biomimetic peroxidase-like catalyst. Journal<br>of Molecular Catalysis A, 2008, 288, 97-102. | 4.8 | 61        |
| 12 | Induction, purification, and characterization of a laccase isozyme from Pleurotus sajor-caju and the potential in decolorization of textile dyes. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 216-222.                           | 1.8 | 54        |
| 13 | Fe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphine supported on pyridyl-functionalized, crosslinked<br>poly(vinyl alcohol) as a biomimetic versatile-peroxidase-like catalyst. Journal of Molecular Catalysis<br>A, 2009, 306, 89-96.   | 4.8 | 46        |
| 14 | Identification and discrimination between some contaminant enzyme activities in commercial preparations of mushroom tyrosinase. Enzyme and Microbial Technology, 2007, 41, 620-627.                                                         | 1.6 | 45        |
| 15 | Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. Journal of Molecular Catalysis A, 2014, 388-389, 2-34.                                         | 4.8 | 42        |
| 16 | Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of<br>Industrial Dyes. Molecules, 2016, 21, 964.                                                                                          | 1.7 | 40        |
| 17 | 5,10,15,20-Tetrakis(4-sulfonato-phenyl)porphine-Mn(III) immobilized on imidazole-activated silica as a<br>novel lignin-peroxidase-like biomimetic catalyst. Journal of Molecular Catalysis A, 2007, 278, 220-227.                           | 4.8 | 39        |
| 18 | Structure–Activity Relationship Study of Hydroxycoumarins and Mushroom Tyrosinase. Journal of<br>Agricultural and Food Chemistry, 2015, 63, 7236-7244.                                                                                      | 2.4 | 38        |

PAOLO ZUCCA

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fungal laccases as tools for biodegradation of industrial dyes. Biocatalysis, 2016, 1, .                                                                                                                                            | 2.3 | 38        |
| 20 | Evaluation of Antioxidant Potential of "Maltese Mushroom―(Cynomorium coccineum) by Means of<br>Multiple Chemical and Biological Assays. Nutrients, 2013, 5, 149-161.                                                                | 1.7 | 36        |
| 21 | Umbelliferone and Esculetin: Inhibitors or Substrates for Polyphenol Oxidases?. Biological and Pharmaceutical Bulletin, 2008, 31, 2187-2193.                                                                                        | 0.6 | 33        |
| 22 | Chemical composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil from Cynomorium coccineum L. Food and Chemical Toxicology, 2012, 50, 3799-3807.                                                  | 1.8 | 33        |
| 23 | Nucleotide Recognition and Phosphate Linkage Hydrolysis at a Lipid Cubic Interface. Journal of the American Chemical Society, 2010, 132, 16176-16184.                                                                               | 6.6 | 31        |
| 24 | Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions. Chemistry Central Journal, 2012, 6, 161.                                                                  | 2.6 | 30        |
| 25 | Mediterranean shrubs as potential antioxidant sources. Natural Product Research, 2008, 22, 689-708.                                                                                                                                 | 1.0 | 29        |
| 26 | Is the bleaching of phenosafranine by hydrogen peroxide oxidation catalyzed by silica-supported<br>5,10,15,20-tetrakis-(sulfonatophenyl)porphine-Mn(III) really biomimetic?. Journal of Molecular Catalysis<br>A, 2010, 321, 27-33. | 4.8 | 28        |
| 27 | Vanilloid Derivatives as Tyrosinase Inhibitors Driven by Virtual Screeningâ€Based QSAR Models. Drug<br>Testing and Analysis, 2011, 3, 176-181.                                                                                      | 1.6 | 26        |
| 28 | Antimicrobial, antioxidant and anti-tyrosinase properties of extracts of the Mediterranean parasitic plant Cytinus hypocistis. BMC Research Notes, 2015, 8, 562.                                                                    | 0.6 | 23        |
| 29 | Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. Phytomedicine, 2019, 55, 125-136.                                                                                                                | 2.3 | 23        |
| 30 | Cofactor Recycling for Selective Enzymatic Biotransformation of Cinnamaldehyde to Cinnamyl<br>Alcohol. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1224-1226.                                                             | 0.6 | 21        |
| 31 | Isolation and characterization of polyphenol oxidase from Sardinian poisonous and non-poisonous chemotypes of Ferula communis (L.). Phytochemistry, 2013, 90, 16-24.                                                                | 1.4 | 21        |
| 32 | Biological Activities and Nutraceutical Potentials of Water Extracts from Different Parts of<br>Cynomorium coccineum L. (Maltese Mushroom). Polish Journal of Food and Nutrition Sciences, 2016,<br>66, 179-188.                    | 0.6 | 18        |
| 33 | Nanosizing Cynomorium: Thumbs up for Potential Antifungal Applications. Inventions, 2017, 2, 24.                                                                                                                                    | 1.3 | 17        |
| 34 | Chemical Composition and Antioxidant Potential Differences between Cynomorium coccineum L.<br>Growing in Italy and in Tunisia: Effect of Environmental Stress. Diversity, 2018, 10, 53.                                             | 0.7 | 16        |
| 35 | Common bean ( <i>Phaseolus vulgaris</i> L.) αâ€amylase inhibitors as safe nutraceutical strategy against<br>diabetes and obesity: An update review. Phytotherapy Research, 2022, 36, 2803-2823.                                     | 2.8 | 16        |
| 36 | Antioxidant potential of family Cucurbitaceae with special emphasis on <i>Cucurbita</i> genus: A key<br>to alleviate oxidative stressâ€mediated disorders. Phytotherapy Research, 2021, 35, 3533-3557.                              | 2.8 | 14        |

PAOLO ZUCCA

| #  | Article                                                                                                                                                                                                                         | IF      | CITATIONS   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|
| 37 | Astringent drugs for bleedings and diarrhoea: The history of Cynomorium coccineum (Maltese) Tj ETQq1 1 0.7843                                                                                                                   | 14 rgBT | Oygrlock 10 |
| 38 | Plants as a Promising Reservoir of Tyrosinase Inhibitors. Mini-Reviews in Organic Chemistry, 2021, 18, 808-828.                                                                                                                 | 0.6     | 11          |
| 39 | Physiological and Phylogenetic Characterization of Rhodotorula diobovata DSBCA06, a Nitrophilous<br>Yeast. Biology, 2018, 7, 39.                                                                                                | 1.3     | 10          |
| 40 | The Modern Use of an Ancient Plant: Exploring the Antioxidant and Nutraceutical Potential of the Maltese Mushroom (Cynomorium Coccineum L.). Antioxidants, 2019, 8, 289.                                                        | 2.2     | 10          |
| 41 | Imidazole versus pyridine as ligands for metalloporphine immobilization in ligninolytic peroxidases-like biomimetic catalysts. Journal of Molecular Catalysis A, 2014, 394, 129-136.                                            | 4.8     | 8           |
| 42 | Sisymbrium officinale, the Plant of Singers: A Review of Its Properties and Uses. Planta Medica, 2020, 86, 307-311.                                                                                                             | 0.7     | 8           |
| 43 | Ligninolytic Peroxidase-Like Activity of a Synthetic Metalloporphine Immobilized onto<br>Mercapto-Grafted Crosslinked PVA Inspired by the Active Site of Cytochrome P450. Chinese Journal of<br>Catalysis, 2011, 32, 1663-1666. | 6.9     | 7           |
| 44 | Antiproliferative and antiviral activity of methanolic extracts from Sardinian Maltese Mushroom<br>(Cynomorium coccineum L.). Natural Product Research, 2019, 35, 1-5.                                                          | 1.0     | 7           |
| 45 | Bacillus subtilis fadB (ysiB) gene encodes an enoyl-CoA hydratase. Annals of Microbiology, 2011, 61,<br>371-374.                                                                                                                | 1.1     | 6           |
| 46 | Biomimetic Sulfide Oxidation by the Means of Immobilized<br>Fe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphin under Mild Experimental Conditions. Journal of<br>Chemistry, 2013, 2013, 1-7.                                 | 0.9     | 5           |
| 47 | Bioinspired versus Enzymatic Oxidation of Some Homologous Thionine Dyes in the Presence of<br>Immobilized Metalloporphyrin Catalysts and Ligninolytic Enzymes. International Journal of Molecular<br>Sciences, 2017, 18, 2553.  | 1.8     | 5           |
| 48 | Evaluation of the Antioxidant and Cytotoxic Activities on Cancer Cell Line of Extracts of Parasitic Plants Harvested in Tunisia. Polish Journal of Food and Nutrition Sciences, 0, , 253-263.                                   | 0.6     | 5           |
| 49 | Sporobolomyces salmonicolor AS A TOOL FOR NITRATE REMOVAL FROM WASTEWATERS. Environmental Engineering and Management Journal, 2012, 11, 1455-1460.                                                                              | 0.2     | 4           |
| 50 | Absence of Polyphenol Oxidase in Cynomorium coccineum, a Widespread Holoparasitic Plant. Plants,<br>2020, 9, 964.                                                                                                               | 1.6     | 2           |