Masanobu Kamitakahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition. Journal of Biomaterials Applications, 2008, 23, 197-212.	2.4	232
2	The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials, 2008, 29, 2719-2728.	11.4	113
3	Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. Journal of the Ceramic Society of Japan, 2008, 116, 950-954.	1.1	72
4	Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials, 2009, 30, 4390-4400.	11.4	64
5	Coating of bone-like apatite for development of bioactive materials for bone reconstruction. Biomedical Materials (Bristol), 2007, 2, R17-R23.	3.3	48
6	Preparation of hydroxyapatite porous ceramics with different porous structures using a hydrothermal treatment with different aqueous solutions. Journal of the Ceramic Society of Japan, 2008, 116, 6-9.	1.1	38
7	Synthesis of octacalcium phosphate intercalated with dicarboxylate ions from calcium carbonate and phosphoric acid. Journal of the Ceramic Society of Japan, 2008, 116, 481-485.	1.1	33
8	Hydrothermal synthesis of hydroxyapatite from octacalcium phosphate: effect of hydrothermal temperature. Journal of the Ceramic Society of Japan, 2009, 117, 385-387.	1.1	33
9	Hydrothermal synthesis and characterization of hydroxyapatite from octacalcium phosphate. Journal of the Ceramic Society of Japan, 2010, 118, 762-766.	1.1	26
10	Hydrothermal synthesis of porous hydroxyapatite ceramics composed of rod-shaped particles and evaluation of their fracture behavior. Ceramics International, 2012, 38, 1649-1654.	4.8	26
11	Importance of nucleation in transformation of octacalcium phosphate to hydroxyapatite. Materials Science and Engineering C, 2014, 40, 121-126.	7.3	26
12	Production of tubular porous hydroxyapatite using electrophoretic deposition. Journal of the Ceramic Society of Japan, 2012, 120, 569-573.	1.1	23
13	Preparation and evaluation of spherical Ca-deficient hydroxyapatite granules with controlled surface microstructure as drug carriers. Materials Science and Engineering C, 2013, 33, 2446-2450.	7.3	21
14	Formation of organically modified octacalcium phosphate in solutions containing various amounts of benzenedicarboxylic acids. Journal of the Ceramic Society of Japan, 2013, 121, 219-225.	1.1	21
15	Incorporation of tetracarboxylate ions into octacalcium phosphate for the development of next-generation biofriendly materials. Communications Chemistry, 2021, 4, .	4.5	19
16	Adhesion behaviors of Escherichia coli on hydroxyapatite. Materials Science and Engineering C, 2016, 61, 169-173.	7.3	18
17	Protein adsorption on needle-shaped hydroxyapatite prepared by hydrothermal treatment of mixture composed of CaHPO4 2H2O and .BETACa3(PO4)2. Journal of the Ceramic Society of Japan, 2009, 117, 847-850.	1.1	16
18	Effect of preparative conditions on crystallinity of apatite particles obtained from simulated body fluids. Colloids and Surfaces B: Biointerfaces, 2011, 84, 545-549.	5.0	16

#	Article	IF	CITATIONS
19	Synthesis of nanosized porous hydroxyapatite granules in hydrogel by electrophoresis. Colloids and Surfaces B: Biointerfaces, 2012, 97, 236-239.	5.0	16
20	Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor. Journal of Materials Science: Materials in Medicine, 2016, 27, 93.	3.6	16
21	Formation of needle-like hydroxyapatite by hydrothermal treatment of CaHPO4 2H2O combined with .BETACa3(PO4)2. Journal of the Ceramic Society of Japan, 2009, 117, 759-764.	1.1	15
22	Preparation and characterization of periodic porous frame of hydroxyapatite. Journal of the Ceramic Society of Japan, 2009, 117, 521-524.	1.1	14
23	Effect of preparation temperature on the ability of bone char to remove fluoride ion and organic contaminants. Journal of the Ceramic Society of Japan, 2014, 122, 995-999.	1.1	14
24	Synthesis of layered double hydroxide coatings with an oriented structure and controllable thickness on aluminium substrates. CrystEngComm, 2016, 18, 1207-1214.	2.6	14
25	Formation of octacalcium phosphate with incorporated succinic acid through gel-mediated processing. Journal of the Ceramic Society of Japan, 2010, 118, 491-497.	1.1	13
26	Fabrication of porous blocks of calcium phosphate through hydrothermal processing under glycine coexistence. Journal of the Ceramic Society of Japan, 2010, 118, 559-563.	1.1	12
27	Regulation and Biological Significance of Formation of Osteoclasts and Foreign Body Giant Cells in an Extraskeletal Implantation Model. Acta Histochemica Et Cytochemica, 2016, 49, 97-107.	1.6	12
28	Ability of Hydroxyapatite Synthesized from Waste Oyster Shells to Remove Fluoride Ions. Materials Transactions, 2015, 56, 1509-1512.	1.2	11
29	Sustainable process for enhanced CO2 mineralization of calcium silicates using a recyclable chelating agent under alkaline conditions. Journal of Environmental Chemical Engineering, 2022, 10, 107055.	6.7	11
30	Preparation of Magnetite Nanoparticles Coated with Silica via a Sol-gel Approach. Journal of the Ceramic Society of Japan, 2007, 115, 877-881.	1.1	10
31	Formation of hydroxyapatite on ceramics consisting of tricalcium phosphate in a simulated body fluid. Journal of the Ceramic Society of Japan, 2008, 116, 96-99.	1.1	10
32	Tubular hydroxyapatite formation through a hydrothermal process from α-tricalcium phosphate with anatase. Journal of Materials Science, 2012, 47, 4194-4199.	3.7	10
33	Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics. Journal of Materials Science: Materials in Medicine, 2016, 27, 97.	3.6	10
34	HYDROXYAPATITE CERAMICS FOR MEDICAL APPLICATION PREPARED BY HYDROTHEMAL METHOD. Phosphorus Research Bulletin, 2009, 23, 25-30.	0.6	8
35	Evaluation of photocatalytic activity of anatase/hydroxyapatite composite granules for environmental purification. Journal of the Ceramic Society of Japan, 2009, 117, 1172-1174.	1.1	8
36	Hydroxyapatite-forming capability and mechanical properties of organic-inorganic hybrids and .ALPHAtricalcium phosphate porous bodies. Journal of the Ceramic Society of Japan, 2010, 118, 57-61.	1.1	8

#	Article	IF	CITATIONS
37	Enhancement of aragonite mineralization with a chelating agent for CO2 storage and utilization at low to moderate temperatures. Scientific Reports, 2021, 11, 13956.	3.3	8
38	Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes. Journal of Materials Science: Materials in Medicine, 2014, 25, 239-245.	3.6	7
39	COMPARISON OF ADSORPTION BEHAVIOR OF BOVINE SERUM ALBUMIN AND OSTEOPONTIN ON HYDROXYAPATITE AND ALUMINA. Phosphorus Research Bulletin, 2012, 26, 23-28.	0.6	7
40	PREPARATION OF SPHERICAL GRANULES OF OCTACALCIUM PHOSPHATE FOR MEDICAL APPLICATION. Functional Materials Letters, 2012, 05, 1260009.	1.2	6
41	Diversity of multinucleated giant cells by microstructures of hydroxyapatite and plasma components in extraskeletal implantation model. Acta Biomaterialia, 2016, 39, 180-191.	8.3	6
42	Synthesis of Organic-Inorganic Hybrids of Poly(Tetramethylene Oxide)-Calcium Silicate and in vitro Evaluation of Their Bioactivity. Journal of the Ceramic Society of Japan, 2007, 115, 732-737.	1.1	4
43	Formation of Stacked Disc-shaped Layered Double Hydroxides by Homogeneous Precipitation Method. Chemistry Letters, 2014, 43, 234-236.	1.3	4
44	Effects of carbonate inclusion on fluoride ion removal by hydroxyapatite: A discussion from the viewpoint of hydroxyapatite dissolution. Journal of the Ceramic Society of Japan, 2016, 124, 1211-1216.	1.1	4
45	Fabrication and evaluation of ascorbic acid phosphate-loaded spherical porous hydroxyapatite/octacalcium phosphate granules. Journal of the Ceramic Society of Japan, 2021, 129, 60-65.	1.1	4
46	Morphology and Composition of Hydroxyapatite Particles Synthesized Hydrothermally from Tricalcium Phosphates. Transactions of the Materials Research Society of Japan, 2011, 36, 405-408.	0.2	4
47	Synthesis of Calcium Phosphates Containing Metal Ions and Evaluation of their Catalytic Activity for the Decomposition of Hydrogen Peroxide. Journal of the Ceramic Society of Japan, 2007, 115, 425-428.	1.3	3
48	Synthesis of ceramics in MOn/2-SiO2 systems through sol-gel processing under coexistence of polyethylene glycol and in vitro evaluation of their bioactivity. Journal of the Ceramic Society of Japan, 2008, 116, 56-62.	1.1	3
49	Effect of preparation conditions on the properties of bioactive glasses for testing SBF. Journal of Materials Science: Materials in Medicine, 2009, 20, 2419-2426.	3.6	3
50	Adhesion Behavior of Microorganisms Isolated from Soil on Hydroxyapatite and Other Materials. Applied Biochemistry and Biotechnology, 2019, 187, 984-993.	2.9	3
51	Control of Calcium Phosphate Precipitation in Hydrogel. Key Engineering Materials, 2007, 330-332, 79-82.	0.4	2
52	EFFECT OF SYNTHETIC CONDITIONS ON MORPHOLOGY AND COMPOSITION OF CARBONATE-CONTAINING HYDROXYAPATITE HYDROTHERMALLY SYNTHESIZED FROM CALCIUM CARBONATE. Phosphorus Research Bulletin, 2011, 25, 72-77.	0.6	2
53	Formation Process of Hydroxyapatite Granules in Agarose Hydrogel by Electrophoresis. Crystal Growth and Design, 2018, 18, 1961-1966.	3.0	2
54	Preparation of spherical porous hydroxyapatite granules as support materials for microorganisms. Journal of the Ceramic Society of Japan, 2018, 126, 732-735.	1.1	2

#	Article	IF	CITATIONS
55	Behavior of .BETAtricalcium phosphate granules composed of rod-shaped particles in the rat tibia. Journal of the Ceramic Society of Japan, 2011, 119, 101-104.	1.1	1
56	Preparation of highly functional artificial bones using the properties of calcium phosphates. Journal of the Ceramic Society of Japan, 2011, 119, 266-270.	1.1	1
57	TECHNIQUES FOR PREPARING PURE ^ ^beta;-TRICALCIUM PHOSPHATE GRANULES COMPOSED OF ROD-SHAPED PARTICLES. Phosphorus Research Bulletin, 2012, 26, 29-32.	0.6	1
58	Hydrothermal Synthesis of Hydroxyapatite Ceramics for Medical Application. , 2008, , .		1
59	Preparing dense Yb ₂ SiO ₅ sintered bodies from Yb–Si–O powder synthesized by the polymerizable complex method and appropriate calcination. Journal of the Ceramic Society of Japan, 2022, 130, 118-122.	1.1	1
60	Design of Bioactive Nano-Hybrids for Bone Tissue Regeneration. , 0, , 339-366.		0
61	Development of Artificial Bone Capable of Drug Loading using Octacalcium Phosphate. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 197-201.	0.2	0
62	Monte Carlo Simulation and Experimental Study for Sintering and Grain Growth of Alumina. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 271-277.	0.2	0
63	Hydrothermal Treatment of Alpha Tricalcium Phosphate Porous Ceramics in Various Aqueous Solutions. Ceramic Engineering and Science Proceedings, 0, , 103-112.	0.1	0
64	Formation of Bone-Like Apatite on Tricalcium Phosphate Ceramics in a Solution Mimicking Body Fluid. Ceramic Engineering and Science Proceedings, 0, , 189-198.	0.1	0
65	Experiment and DEM Simulation on Bending Fracture of Ultra-fine Grained Cemented Carbide. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, 249-256.	0.2	0