
Concetta Ruocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094694/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Main Hydrogen Production Processes: An Overview. Catalysts, 2021, 11, 547.	1.6	80
2	Ethanol steam reforming over bimetallic coated ceramic foams: Effect of reactor configuration and catalytic support. International Journal of Hydrogen Energy, 2015, 40, 12650-12662.	3.8	60
3	Rh, Ru and Pt ternary perovskites type oxides BaZr(1-x)MexO3 for methane dry reforming. Applied Catalysis A: General, 2016, 517, 47-55.	2.2	58
4	From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor. Renewable Energy, 2018, 119, 834-843.	4.3	55
5	Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: Experimental demonstration, reactor modelling and design. Energy, 2018, 143, 666-681.	4.5	51
6	Directing selectivity of ethanol steam reforming inÂmembrane reactors. International Journal of Hydrogen Energy, 2015, 40, 5837-5848.	3.8	49
7	Oxidative steam reforming of ethanol on mesoporous silica supported PtNi/CeO2 catalysts. International Journal of Hydrogen Energy, 2017, 42, 1598-1608.	3.8	49
8	Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica. Catalysis Today, 2018, 307, 175-188.	2.2	48
9	Ceramic foams coated with Pt Ni/CeO2ZrO2 for bioethanol steam reforming. International Journal of Hydrogen Energy, 2016, 41, 11526-11536.	3.8	47
10	A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid–Gas Phase Chemical Processes. Nanomaterials, 2020, 10, 1596.	1.9	39
11	Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability. Catalysts, 2020, 10, 665.	1.6	39
12	Pt–Ni based catalyst for ethanol reforming in a fluidized bed membrane reactor. International Journal of Hydrogen Energy, 2016, 41, 20122-20136.	3.8	36
13	Platinum Based Catalysts in the Water Gas Shift Reaction: Recent Advances. Metals, 2020, 10, 866.	1.0	33
14	Renewable Hydrogen from Ethanol Reforming over CeO2-SiO2 Based Catalysts. Catalysts, 2017, 7, 226.	1.6	32
15	Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO2-SiO2 Based Catalysts for Ethanol Reforming. Energies, 2017, 10, 1030.	1.6	29
16	Production of hydrogen in a Pd-membrane reactor via catalytic reforming of olive mill wastewater. Chemical Engineering Journal, 2015, 275, 366-373.	6.6	28
17	Kinetic assessment of Ni-based catalysts in low-temperature methane/biogas steam reforming. International Journal of Hydrogen Energy, 2016, 41, 16865-16877.	3.8	28
18	Methane dry reforming on Ru perovskites, AZrRuO3: Influence of preparation method and substitution of A cation with alkaline earth metals. Journal of CO2 Utilization, 2019, 30, 222-231.	3.3	28

CONCETTA RUOCCO

#	Article	IF	CITATIONS
19	Experimental and kinetic study of oxidative steam reforming of ethanol over fresh and spent bimetallic catalysts. Chemical Engineering Journal, 2019, 377, 119778.	6.6	27
20	Highly active and stable Pt-Ni/CeO2-SiO2 catalysts for ethanol reforming. Journal of Cleaner Production, 2017, 166, 263-272.	4.6	26
21	Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer. International Journal of Hydrogen Energy, 2017, 42, 13970-13987.	3.8	24
22	Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction. Catalysts, 2019, 9, 991.	1.6	24
23	Oxidative reforming of ethanol over CeO 2 -SiO 2 based catalysts in a fluidized bed reactor. Chemical Engineering and Processing: Process Intensification, 2018, 124, 319-327.	1.8	23
24	Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review. Energies, 2022, 15, 3588.	1.6	21
25	Catalytic reforming of olive mill wastewater and methane in a Pd-membrane reactor. International Journal of Hydrogen Energy, 2016, 41, 5465-5474.	3.8	20
26	Oxidative steam reforming of ethanol in a fluidized bed over CeO2-SiO2 supported catalysts: effect of catalytic formulation. Renewable Energy, 2018, 125, 356-364.	4.3	20
27	Hydrogen production by oxidative reforming of ethanol in a fluidized bed reactor using a Pt Ni/CeO2SiO2 catalyst. International Journal of Hydrogen Energy, 2019, 44, 12661-12670.	3.8	18
28	The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review. Energies, 2022, 15, 2383.	1.6	16
29	Kinetics of Oxidative Steam Reforming of Ethanol Over Bimetallic Catalysts Supported on CeO2–SiO2: A Comparative Study. Topics in Catalysis, 2019, 62, 467-478.	1.3	15
30	State of the Art of Conventional Reactors for Methanol Production. , 2018, , 29-51.		14
31	Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor. Renewable Energy, 2022, 182, 913-922.	4.3	14
32	Pt/Re/CeO2 Based Catalysts for CO-Water–Gas Shift Reaction: from Powders to Structured Catalyst. Catalysts, 2020, 10, 564.	1.6	13
33	Ceria-coated replicated aluminium sponges as catalysts for the CO-water gas shift process. International Journal of Hydrogen Energy, 2021, 46, 12158-12168.	3.8	12
34	Catalytic Behavior of Co-Based Catalysts in the Kinetic Study of Acetic Acid Steam Reforming. Industrial & Engineering Chemistry Research, 2020, 59, 19531-19538.	1.8	11
35	Detailed kinetic mechanism for the hydrogen production via the oxidative reforming of ethanol. Chemical Engineering Science, 2021, 237, 116591.	1.9	8
36	Experimental study of the oxidative steam reforming of fuel grade bioethanol over Pt–Ni metallic foam structured catalysts. International Journal of Hydrogen Energy, 2023, 48, 11943-11955.	3.8	7

#	Article	IF	CITATIONS
37	Membrane reactors for H2 and energy production. , 2020, , 33-56.		4
38	On the Support Effect and the Cr Promotion of Co Based Catalysts for the Acetic Acid Steam Reforming. Catalysts, 2021, 11, 133.	1.6	4
39	Fuel grade bioethanol reforming in a fluidized bed reactor over highly durable Pt-Ni/CeO2-SiO2 catalysts. Chemical Engineering and Processing: Process Intensification, 2022, 174, 108888.	1.8	4
40	Ultracompact biofuels catalytic reforming processes for distributed renewable hydrogen production. Studies in Surface Science and Catalysis, 2020, 179, 317-333.	1.5	3
41	Catalysts for Sustainable Hydrogen Production: Preparation, Applications and Process Integration. Catalysts, 2022, 12, 322.	1.6	3
42	General catalyst-related issues. , 2020, , 303-324.		2
43	Noble Metals-Based Catalysts for Hydrogen Production via Bioethanol Reforming in a Fluidized Bed Reactor. , 0, , .		1