Pankaj Dwivedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094607/publications.pdf

Version: 2024-02-01

46 papers 1,180 citations

279798 23 h-index 395702 33 g-index

46 all docs

46 docs citations

46 times ranked

1813 citing authors

#	Article	IF	Citations
1	Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomaterialia, 2016, 31, 288-300.	8.3	109
2	Pharmacokinetics study of arteether loaded solid lipid nanoparticles: An improved oral bioavailability in rats. International Journal of Pharmaceutics, 2014, 466, 321-327.	5.2	81
3	Folic Acid Conjugated Guar Gum Nanoparticles for Targeting Methotrexate to Colon Cancer. Journal of Biomedical Nanotechnology, 2013, 9, 96-106.	1.1	66
4	Magnetic Targeting and Ultrasound Activation of Liposome–Microbubble Conjugate for Enhanced Delivery of Anticancer Therapies. ACS Applied Materials & Interfaces, 2020, 12, 23737-23751.	8.0	66
5	Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. Journal of Antimicrobial Chemotherapy, 2012, 67, 2650-2660.	3.0	54
6	Self Assembled Ionically Sodium Alginate Cross-Linked Amphotericin B Encapsulated Glycol Chitosan Stearate Nanoparticles: Applicability in Better Chemotherapy and Non-Toxic Delivery in Visceral Leishmaniasis. Pharmaceutical Research, 2015, 32, 1727-1740.	3.5	52
7	Development of targeted 1,2-diacyl-sn-glycero-3-phospho- <scp>l</scp> -serine-coated gelatin nanoparticles loaded with amphotericin B for improved <i>in vitro</i> and <i>in vivo</i> effect in leishmaniasis. Expert Opinion on Drug Delivery, 2014, 11, 633-646.	5.0	47
8	Colon-specific delivery of curcumin by exploiting Eudragit-decorated chitosan nanoparticles in vitro and in vivo. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	41
9	Development, characterization and toxicological evaluations of phospholipids complexes of curcumin for effective drug delivery in cancer chemotherapy. Drug Delivery, 2016, 23, 1057-1068.	5.7	36
10	Covalent Functionalized Self-Assembled Lipo-Polymerosome Bearing Amphotericin B for Better Management of Leishmaniasis and Its Toxicity Evaluation. Molecular Pharmaceutics, 2014, 11, 951-963.	4.6	35
11	Optimization of novel tocopheryl acetate nanoemulsions for parenteral delivery of curcumin for therapeutic intervention of sepsis. Expert Opinion on Drug Delivery, 2014, 11, 1697-1712.	5.0	31
12	Development of 4-sulfated N -acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids and Surfaces B: Biointerfaces, 2015, 136, 150-159.	5.0	31
13	Rapid production of single- and multi-compartment polymeric microcapsules in a facile 3D microfluidic process for magnetic separation and synergistic delivery. Sensors and Actuators B: Chemical, 2018, 275, 190-198.	7.8	30
14	Exploitation of Lectinized Lipo-Polymerosome Encapsulated Amphotericin B to Target Macrophages for Effective Chemotherapy of Visceral Leishmaniasis. Bioconjugate Chemistry, 2014, 25, 1091-1102.	3.6	29
15	Core–shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 481-491.	2.8	29
16	Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: An approach by enhanced bioavailability. Colloids and Surfaces B: Biointerfaces, 2015, 126, 467-475.	5.0	28
17	"Magnus nano-bullets―as T1/T2 based dual-modal for in vitro and in vivo MRI visualization. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 264-273.	3.3	28
18	Emerging trend in nano-engineered polyelectrolyte-based surrogate carriers for delivery of bioactives. Expert Opinion on Drug Delivery, 2010, 7, 993-1011.	5.0	26

#	Article	IF	CITATIONS
19	Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 957-967.	2.8	26
20	Nanoparticulate Carrier Mediated Intranasal Delivery of Insulin for the Restoration of Memory Signaling in Alzheimer's Disease. Current Nanoscience, 2013, 9, 46-55.	1.2	25
21	Characteristics of Artemether-Loaded Poly(lactic- <i>co</i> glycolic) Acid Microparticles Fabricated by Coaxial Electrospray: Validation of Enhanced Encapsulation Efficiency and Bioavailability. Molecular Pharmaceutics, 2017, 14, 4725-4733.	4.6	25
22	Exploiting 4-sulphate <i>N</i> -acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytes <i>in vitro</i> and <i>in vivo</i> . Journal of Drug Targeting, 2012, 20, 883-896.	4.4	23
23	Engineered multifunctional biodegradable hybrid microparticles for paclitaxel delivery in cancer therapy. Materials Science and Engineering C, 2019, 102, 113-123.	7.3	23
24	Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue. ACS Biomaterials Science and Engineering, 2018, 4, 3177-3184.	5.2	20
25	Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of arteether: pharmacokinetics, toxicity and antimalarial activity in mice. RSC Advances, 2014, 4, 64905-64918.	3.6	18
26	Potential in vitro and in vivo colon specific anticancer activity in a HCT-116 xenograft nude mice model: targeted delivery using enteric coated folate modified nanoparticles. RSC Advances, 2015, 5, 16507-16520.	3.6	18
27	Oleanolic–bioenhancer coloaded chitosan modified nanocarriers attenuate breast cancer cells by multimode mechanism and preserve female fertility. International Journal of Biological Macromolecules, 2017, 104, 1345-1358.	7.5	18
28	Preparation of pesticide-loaded microcapsules by liquid-driven coaxial flow focusing for controlled release. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 840-847.	3 . 4	16
29	Integrin α _v ² ₃ Receptor Overexpressing on Tumor-Targeted Positive MRI-Guided Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 163-176.	8.0	16
30	Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4. Frontiers of Chemical Science and Engineering, 2020, 14, 880-888.	4.4	15
31	Preparation and Characterization of Solid Lipid Nanoparticles of Antimalarial Drug Arteether for Oral Administration. Journal of Biomaterials and Tissue Engineering, 2014, 4, 133-137.	0.1	14
32	Formulation and Characterization of Amphotericin B Loaded Nanostructured Lipid Carriers Using Microfluidizer. Journal of Biomaterials and Tissue Engineering, 2014, 4, 194-197.	0.1	13
33	Effect of polydimethylsiloxane and ethylcellulose on <i>in vitro</i> permeation of centchroman from its transdermal patches. Drug Delivery, 2016, 23, 113-122.	5.7	12
34	Design of folic acid conjugated chitosan nano-cur–bioenhancers to attenuate the hormone-refractory metastatic prostate carcinoma by augmenting oral bioavailability. RSC Advances, 2016, 6, 25137-25148.	3.6	12
35	Synthesis of a functionalized dipeptide for targeted delivery and pH-sensitive release of chemotherapeutics. Chemical Communications, 2020, 56, 285-288.	4.1	12
36	One-step microencapsulation and spraying of pesticide formulations for improved adhesion and sustained release. Journal of Microencapsulation, 2019, 36, 649-658.	2.8	11

#	Article	IF	CITATIONS
37	Moxifloxacin-Loaded Nanoemulsions Having Tocopheryl Succinate as the Integral Component Improves Pharmacokinetics and Enhances Survival in <i>E. coli</i> Intra-Abdominal Infection. Molecular Pharmaceutics, 2014, 11, 4314-4326.	4.6	10
38	Improved oral bioavailability of novel antithrombotic S002-333 via chitosan coated liposomes: a pharmacokinetic assessment. RSC Advances, 2015, 5, 39168-39176.	3.6	7
39	Nutrition nutraceuticals: a proactive approach for healthcare. , 2016, , 79-116.		7
40	Development of Nevirapine Loaded Novel Surfactant Free Polymeric Emulsion and Investigations for Its Suitability as Drug Delivery Vehicle. Journal of Bionanoscience, 2010, 4, 66-73.	0.4	7
41	Toxicological Evaluation and Targeting Tumor Cells Through Folic Acid Modified Guar Gum Nanoparticles of Curcumin. Journal of Biomaterials and Tissue Engineering, 2014, 4, 143-149.	0.1	6
42	Co-delivery of artemether and piperine via core-shell microparticles for enhanced sustained release. Journal of Drug Delivery Science and Technology, 2021, 63, 102505.	3.0	4
43	Preparation and Characterization of Depot Injectable Microspheres of Centchroman Using Ethyl Cellulose. Journal of Biomaterials and Tissue Engineering, 2014, 4, 259-268.	0.1	2
44	Assay Method for Quality Control and Stability Studies of a New Antidiabetic Agent (S-001-469). Journal of Biomaterials and Tissue Engineering, 2014, 4, 308-314.	0.1	1
45	Synthesized Phytomolecular Hybrids as Natural Interventions to Manage Hyperlipidemia and to Ameliorate Diabetes in Streptozotocin Induced Mice. Polycyclic Aromatic Compounds, 0, , 1-19.	2.6	0
46	Assay Method for Quality Control and Stability Studies of a New Antithrombotic Agent (S007-867). Journal of Biomaterials and Tissue Engineering, 2014, 4, 663-668.	0.1	0