Magda ConstantÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4094106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave-assisted condensation of bio-based hydroxymethylfurfural and acetone over recyclable hydrotalcite-related materials. Applied Catalysis B: Environmental, 2021, 282, 119599.	10.8	17
2	Improvement of Biohydrogen and Usable Chemical Products from Glycerol by Co-Culture of Enterobacter spH1 and Citrobacter freundii H3 Using Different Supports as Surface Immobilization. Fermentation, 2021, 7, 154.	1.4	3
3	Recent Impacts of Heterogeneous Catalysis in Biorefineries. Industrial & Engineering Chemistry Research, 2021, 60, 18612-18626.	1.8	14
4	Microwave-Assisted Aldol Condensation of Furfural and Acetone over Mg–Al Hydrotalcite-Based Catalysts. Crystals, 2020, 10, 833.	1.0	13
5	Preparation and Characterization of UV-Curable Acrylic Membranes Embedding Natural Antioxidants. Polymers, 2020, 12, 358.	2.0	3
6	Microwave processes: A viable technology for obtaining xylose from walnut shell to produce lactic acid by Bacillus coagulans. Journal of Cleaner Production, 2019, 231, 1171-1181.	4.6	31
7	Lactic Acid Production from Renewable Feedstock: Fractionation, Hydrolysis, and Fermentation. Advanced Sustainable Systems, 2018, 2, 1700185.	2.7	4
8	Impact of cellulose treatment with hydrotalcites in hydrothermal catalytic conversion. Chemical Engineering Science, 2018, 179, 83-91.	1.9	14
9	Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies, 2018, 11, 3366.	1.6	260
10	Combining catalytical and biological processes to transform cellulose into high value-added products. ChemistrySelect, 2017, 2, .	0.7	1
11	Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp Fuel, 2016, 186, 375-384.	3.4	76
12	Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains. Folia Microbiologica, 2016, 61, 109-118.	1.1	9
13	Combined heterogeneous catalysis and dark fermentation systems for the conversion of cellulose into biohydrogen. Biochemical Engineering Journal, 2015, 101, 209-219.	1.8	20
14	d-Lactic acid production from cellulose: dilute acid treatment of cellulose assisted by microwave followed by microbial fermentation. Cellulose, 2015, 22, 3089-3098.	2.4	20
15	Biodegradation of fuel oxygenates and their effect on the expression of a newly identified cytochrome P450 gene in Achromobacter xylosoxidans MCM2/2/1. Process Biochemistry, 2014, 49, 124-129.	1.8	17
16	The effect of BTX compounds on the biodegradation of ETBE by an ETBE degrading bacterial consortium. Biotechnology and Bioprocess Engineering, 2013, 18, 1216-1223.	1.4	7
17	Polysulfone/Vanillin Microcapsules for Antibacterial and Aromatic Finishing of Fabrics. Industrial & Engineering Chemistry Research, 2013, 52, 9995-10003.	1.8	41
18	Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system. New Biotechnology, 2013, 30, 788-792.	2.4	10

Magda ConstantÃ-

#	Article	IF	CITATIONS
19	Biohydrogen production by dark fermentation of glycerol using <i>Enterobacter</i> and <i>Citrobacter</i> Sp. Biotechnology Progress, 2013, 29, 31-38.	1.3	31
20	Biohydrogen Production from Glycerol using Thermotoga spp Energy Procedia, 2012, 29, 300-307.	1.8	33
21	Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	102
22	Biodegradation of methyl tert-butyl ether by newly identified soil microorganisms in a simple mineral solution. World Journal of Microbiology and Biotechnology, 2011, 27, 813-821.	1.7	7
23	Biodegradation of MTBE by Achromobacter xylosoxidans MCM1/1 induces synthesis of proteins that may be related to cell survival. Process Biochemistry, 2010, 45, 794-798.	1.8	23
24	Screenprinted integrated microsystem for the electrochemical detection of Salmonella. New Biotechnology, 2009, 25, S54.	2.4	0
25	Population dynamics ofOenococcus oenistrains in a new winery and the effect of SO2and yeast strain. FEMS Microbiology Letters, 2005, 246, 111-117.	0.7	37
26	Relationship Between a Stress Membrane Protein of <1>Oenococcus oeni 1 and Glyceraldehyde-3-Phosphate Dehydrogenases. Applied Biochemistry and Biotechnology, 2005, 127, 043-052.	1.4	6
27	Study of SomeSaccharomyces cerevisiaeStrains for Winemaking after Preadaptation at Low Temperatures. Journal of Agricultural and Food Chemistry, 2005, 53, 1003-1011.	2.4	47
28	Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity ofOenococcus oeni. FEMS Microbiology Letters, 2002, 211, 155-159.	0.7	94
29	Degradation and desulfurization of dibenzothiophene sulfone and other sulfur compounds by Agrobacterium MC501 and a mixed culture. Enzyme and Microbial Technology, 1996, 19, 214-219.	1.6	39
30	Degradation of dibenzothiophene by Pseudomonas putida. Letters in Applied Microbiology, 1994, 18, 107-111.	1.0	9
31	Interactions of thiophenes and acidophilic, thermophilic bacteria. Applied Biochemistry and Biotechnology, 1992, 34-35, 767-776.	1.4	5
32	Genetic changes in mating activity in laboratory strains of Drosophila subobscura. Genetica, 1990, 80, 39-43.	0.5	13