Guillaume Noirbent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4093930/publications.pdf

Version: 2024-02-01

201674 302126 1,579 41 27 39 citations h-index g-index papers 41 41 41 692 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of two-photon polymerized microstructures using fluorescence lifetime measurements. Polymer Chemistry, 2022, 13, 2902-2906.	3.9	6
2	Novel Copper Complexes as Visible Light Photoinitiators for the Synthesis of Interpenetrating Polymer Networks (IPNs). Polymers, 2022, 14, 1998.	4.5	12
3	Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. European Polymer Journal, 2021, 142, 110109.	5.4	46
4	Allyloxy ketones as efficient photoinitiators with high migration stability in free radical polymerization and 3D printing. Dyes and Pigments, 2021, 185, 108900.	3.7	39
5	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (TCF) acceptor. Dyes and Pigments, 2021, 184, 108807.	3.7	23
6	Bis-chalcone derivatives derived from natural products as near-UV/visible light sensitive photoinitiators for 3D/4D printing. Materials Chemistry Frontiers, 2021, 5, 901-916.	5.9	59
7	Synthesis, and the optical and electrochemical properties of a series of push–pull dyes based on the 4-(9-ethyl-9 <i>H</i> -carbazol-3-yl)-4-phenylbuta-1,3-dienyl donor. New Journal of Chemistry, 2021, 45, 5808-5821.	2.8	6
8	D–A dyads and A–D–A triads based on ferrocene: push–pull dyes with unusual behaviours in solution. New Journal of Chemistry, 2021, 45, 13475-13498.	2.8	6
9	Nearâ€Infrared PhotoInitiating Systems: Photothermal versus Triplet–Triplet Annihilationâ€Based Upconversion Polymerization. Macromolecular Rapid Communications, 2021, 42, e2100047.	3.9	35
10	3-Carboxylic Acid and Formyl-Derived Coumarins as Photoinitiators in Photo-Oxidation or Photo-Reduction Processes for Photopolymerization upon Visible Light: Photocomposite Synthesis and 3D Printing Applications. Molecules, 2021, 26, 1753.	3.8	27
11	In situ generation of Ag nanoparticles during photopolymerization by using newly developed dyesâ€based <scp>threeâ€component</scp> photoinitiating systems and the related <scp>3D</scp> printing applications and their shape change behavior. Journal of Polymer Science, 2021, 59, 843-859.	3.8	30
12	Photopolymerization and 3D/4D applications using newly developed dyes: Search around the natural chalcone scaffold in photoinitiating systems. Dyes and Pigments, 2021, 188, 109213.	3.7	49
13	Dyes with tunable absorption properties from the visible to the near infrared range: 2,4,5,7-Tetranitrofluorene (TNF) as a unique electron acceptor. Dyes and Pigments, 2021, 189, 109250.	3.7	2
14	Towards new NIR dyes for free radical photopolymerization processes. Beilstein Journal of Organic Chemistry, 2021, 17, 2067-2076.	2.2	14
15	Panchromatic Copper Complexes for Visible Light Photopolymerization. Photochem, 2021, 1, 167-189.	2.2	21
16	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 4,4-bis(4-methoxy phenyl)butadienyl donor. Dyes and Pigments, 2021, 194, 109552.	3.7	4
17	New multifunctional benzophenone-based photoinitiators with high migration stability and their applications in 3D printing. Materials Chemistry Frontiers, 2021, 5, 1982-1994.	5.9	43
18	Substituent effects on the photoinitiation ability of coumarin-based oxime-ester photoinitiators for free radical photopolymerization. Materials Chemistry Frontiers, 2021, 5, 8361-8370.	5.9	42

#	Article	IF	Citations
19	Freeâ€radical polymerization upon nearâ€infrared light irradiation, merging photochemical and photothermal initiating methods. Journal of Polymer Science, 2020, 58, 300-308.	3.8	30
20	New push-pull dyes based on 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile: An amine-directed synthesis. Dyes and Pigments, 2020, 175, 108182.	3.7	16
21	Novel ketone derivative-based photoinitiating systems for free radical polymerization under mild conditions and 3D printing. Polymer Chemistry, 2020, 11, 5767-5777.	3.9	38
22	Novel D–π-A and A–π-D–π-A three-component photoinitiating systems based on carbazole/triphenylamino based chalcones and application in 3D and 4D printing. Polymer Chemistry, 2020, 11, 6512-6528.	3.9	50
23	Recent Advances on Copper Complexes as Visible Light Photoinitiators and (Photo) Redox Initiators of Polymerization. Catalysts, 2020, 10, 953.	3.5	34
24	Ketone derivatives as photoinitiators for both radical and cationic photopolymerizations under visible LED and application in 3D printing. European Polymer Journal, 2020, 132, 109737.	5.4	33
25	New Donor-Acceptor Stenhouse Adducts as Visible and Near Infrared Light Polymerization Photoinitiators. Molecules, 2020, 25, 2317.	3.8	20
26	Photoinitiators derived from natural product scaffolds: monochalcones in three-component photoinitiating systems and their applications in 3D printing. Polymer Chemistry, 2020, 11, 4647-4659.	3.9	72
27	Monocomponent Photoinitiators based on Benzophenone-Carbazole Structure for LED Photoinitiating Systems and Application on 3D Printing. Polymers, 2020, 12, 1394.	4.5	50
28	Recent advances on naphthalic anhydrides and 1,8-naphthalimide-based photoinitiators of polymerization. European Polymer Journal, 2020, 132, 109702.	5.4	62
29	Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. European Polymer Journal, 2020, 133, 109797.	5.4	73
30	Metalated porphyrins as versatile visible light and NIR photoinitiators of polymerization. European Polymer Journal, 2020, 139, 110019.	5.4	31
31	Unprecedented Nucleophilic Attack of Piperidine on the Electron Acceptor during the Synthesis of Pushâ€Pull Dyes by a <i>Knoevenagel</i> Reaction. Helvetica Chimica Acta, 2019, 102, e1900229.	1.6	21
32	Ferrocene: An unrivaled electroactive building block for the design of push-pull dyes with near-infrared and infrared absorptions. Dyes and Pigments, 2019, 170, 107611.	3.7	29
33	Push-Pull Chromophores Based on the Naphthalene Scaffold: Potential Candidates for Optoelectronic Applications. Materials, 2019, 12, 1342.	2.9	29
34	Ferrocene-based (photo)redox polymerization under long wavelengths. Polymer Chemistry, 2019, 10, 1431-1441.	3.9	53
35	Different NIR dye scaffolds for polymerization reactions under NIR light. Polymer Chemistry, 2019, 10, 6505-6514.	3.9	70
36	High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules, 2018, 51, 1314-1324.	4.8	152

#	Article	IF	CITATIONS
37	A novel class of photoinitiators with a thermally activated delayed fluorescence (TADF) property. New Journal of Chemistry, 2018, 42, 8261-8270.	2.8	29
38	Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region. Beilstein Journal of Organic Chemistry, 2018, 14, 3025-3046.	2.2	40
39	Recent Advances on Nitrofluorene Derivatives: Versatile Electron Acceptors to Create Dyes Absorbing from the Visible to the Near and Far Infrared Region. Materials, 2018, 11, 2425.	2.9	20
40	Photoinduced Thermal Polymerization Reactions. Macromolecules, 2018, 51, 8808-8820.	4.8	63
41	Carbazole Derivatives with Thermally Activated Delayed Fluorescence Property as Photoinitiators/Photoredox Catalysts for LED 3D Printing Technology. Macromolecules, 2017, 50, 4913-4926.	4.8	100