Serge Guillaume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4093704/publications.pdf

Version: 2024-02-01

430874 434195 49 982 18 31 citations g-index h-index papers 50 50 50 948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detection of natural clusters via S-DBSCAN a Self-tuning version of DBSCAN. Knowledge-Based Systems, 2022, 241, 108288.	7.1	6
2	A progressive sampling framework for clustering. Neurocomputing, 2021, 450, 48-60.	5.9	1
3	A fuzzy logic based soil chemical quality index for cacao. Computers and Electronics in Agriculture, 2020, 177, 105624.	7.7	2
4	Consistency of the Tools That Predict the Impact of Single Nucleotide Variants (SNVs) on Gene Functionality: The BRCA1 Gene. Biomolecules, 2020, 10, 475.	4.0	0
5	Support to decision-making. , 2020, , 183-224.		6
6	From Supervised Instance and Feature Selection Algorithms to Dual Selection: A Review. Unsupervised and Semi-supervised Learning, 2020, , 83-128.	0.5	4
7	A Family of Unsupervised Sampling Algorithms. Unsupervised and Semi-supervised Learning, 2020, , 45-81.	0.5	0
8	A Preliminary Comparison of P-Tool Consistency. IFMBE Proceedings, 2020, , 731-735.	0.3	0
9	A hierarchical clustering algorithm and an improvement of the single linkage criterion to deal with noise. Expert Systems With Applications, 2019, 128, 96-108.	7.6	40
10	Munec: a mutual neighbor-based clustering algorithm. Information Sciences, 2019, 486, 148-170.	6.9	20
11	ProTraS: A probabilistic traversing sampling algorithm. Expert Systems With Applications, 2018, 105, 65-76.	7.6	26
12	GeoFIS: An Open Source, Decision-Support Tool for Precision Agriculture Data. Agriculture (Switzerland), 2018, 8, 73.	3.1	32
13	DIDES: a fast and effective sampling for clustering algorithm. Knowledge and Information Systems, 2017, 50, 543-568.	3.2	21
14	k -maxitive fuzzy measures: A scalable approach to model interactions. Fuzzy Sets and Systems, 2017, 324, 33-48.	2.7	27
15	DENDIS: A new density-based sampling for clustering algorithm. Expert Systems With Applications, 2016, 56, 349-359.	7.6	32
16	A spectral envelope approach towards effective SVM-RFE on infrared data. Pattern Recognition Letters, 2016, 71, 59-65.	4.2	11
17	A fast and flexible instance selection algorithm adapted to non-trivial database sizes. Intelligent Data Analysis, 2015, 19, 631-658.	0.9	0
18	Fuzzy Modeling of a Composite Agronomical Feature Using FisPro: The Case of Vine Vigor. Communications in Computer and Information Science, 2014, , 127-137.	0.5	1

#	Article	IF	Citations
19	Fuzzy partition-based distance practical use and implementation., 2013,,.		О
20	Imperfect knowledge and data-based approach to model a complex agronomic feature $\hat{a} \in \text{``Application to}$ vine vigor. Computers and Electronics in Agriculture, 2013, 99, 135-145.	7.7	6
21	Revised HLMS: A useful algorithm for fuzzy measure identification. Information Fusion, 2013, 14, 532-540.	19.1	24
22	Fuzzy partitions: A way to integrate expert knowledge into distance calculations. Information Sciences, 2013, 245, 76-95.	6.9	16
23	Soft computing-based decision support tools for spatial data. International Journal of Computational Intelligence Systems, 2013, 6, 18.	2.7	5
24	SystÃ"mes d'inférence ï¬,oue : collaboration expertise et données dans un environnement de modélisation intégrée à l'aide de FisPro. Revue D'Intelligence Artificielle, 2013, 27, 569-593.	0.6	0
25	Open source software for modelling using agro-environmental georeferenced data. , 2012, , .		4
26	Parameter optimization of a fuzzy inference system using the FisPro open source software. , 2012, , .		3
27	Fuzzy inference systems: An integrated modeling environment for collaboration between expert knowledge and data using FisPro. Expert Systems With Applications, 2012, 39, 8744-8755.	7.6	77
28	Discrimination of Corn from Monocotyledonous Weeds with Ultraviolet (UV) Induced Fluorescence. Applied Spectroscopy, 2011, 65, 10-19.	2.2	15
29	Small Catchment Agricultural Management Using Decision Variables Defined at Catchment Scale and a Fuzzy Rule-Based System: A Mediterranean Vineyard Case Study. Water Resources Management, 2011, 25, 2649-2668.	3.9	11
30	Learning interpretable fuzzy inference systems with FisPro. Information Sciences, 2011, 181, 4409-4427.	6.9	110
31	Fuzzy Logic Approach for Spatially Variable Nitrogen Fertilization of Corn Based on Soil, Crop and Precipitation Information. Lecture Notes in Computer Science, 2011, , 356-368.	1.3	2
32	A numerical distance based on fuzzy partitions. , 2011, , .		3
33	Improved Discrimination between Monocotyledonous and Dicotyledonous Plants for Weed Control Based on the Blue-Green Region of Ultraviolet-Induced Fluorescence Spectra. Applied Spectroscopy, 2010, 64, 30-36.	2.2	9
34	A segmentation algorithm for the delineation of agricultural management zones. Computers and Electronics in Agriculture, 2010, 70, 199-208.	7.7	78
35	Interpretable fuzzy inference systems for cooperation of expert knowledge and data in agricultural applications using FisPro. , 2010, , .		8
36	Practical Inference With Systems of Gradual Implicative Rules. IEEE Transactions on Fuzzy Systems, 2009, 17, 61-78.	9.8	30

#	Article	IF	CITATIONS
37	Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices $\hat{a}\in$ " The case of sugarcane harvest on Reunion Island. Remote Sensing of Environment, 2009, 113, 2052-2061.	11.0	82
38	Hybrid genetic algorithm for dual selection. Pattern Analysis and Applications, 2008, 11, 179-198.	4.6	24
39	HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. International Journal of Intelligent Systems, 2008, 23, 761-794.	5.7	87
40	Influence of micrometeorological factors on pesticide loss to the air during vine spraying: Data analysis with statistical and fuzzy inference models. Biosystems Engineering, 2008, 100, 184-197.	4.3	29
41	Effects of Preprocessing of Ultraviolet-Induced Fluorescence Spectra in Plant Fingerprinting Applications. Applied Spectroscopy, 2008, 62, 747-752.	2.2	6
42	Using the OLS algorithm to build interpretable rule bases: an application to a depollution problem. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	0
43	Multi-source Information Fusion: Monitoring Sugarcane Harvest Using Multi-temporal Images, Crop Growth Modelling, and Expert Knowledge. , 2007, , .		4
44	Building an interpretable fuzzy rule base from data using Orthogonal Least Squares—Application to a depollution problem. Fuzzy Sets and Systems, 2007, 158, 2078-2094.	2.7	35
45	A practical inference method with several implicative gradual rules and a fuzzy input: one and two dimensions. , 2007, , .		2
46	Knowledge-based Intelligent Diagnosis of Ground Robot Collision with Non Detectable Obstacles. Journal of Intelligent and Robotic Systems: Theory and Applications, 2007, 48, 539-566.	3.4	17
47	Expert guided integration of induced knowledge into a fuzzy knowledge base. Soft Computing, 2006, 10, 773-784.	3.6	32
48	A new method for inducing a set of interpretable fuzzy partitions and fuzzy inference systems from data. Studies in Fuzziness and Soft Computing, 2003, , 148-175.	0.8	18
49	Knowledge discovery for control purposes in food industry databases. Fuzzy Sets and Systems, 2001, 122, 487-497.	2.7	15