List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4093695/publications.pdf Version: 2024-02-01

		36303	69250
210	7,863	51	77
papers	citations	h-index	g-index
211 all docs	211 docs citations	211 times ranked	6661 citing authors

#	Article	IF	CITATIONS
1	Rapid Fabrication of 3D Chiral Microstructures by Single Exposure of Interfered Femtosecond Vortex Beams and Capillaryâ€Forceâ€Assisted Selfâ€Assembly. Advanced Functional Materials, 2022, 32, 2106917.	14.9	17
2	Sustaining Robust Cavities with Slippery Liquid–Liquid Interfaces. Advanced Science, 2022, 9, e2103568.	11.2	8
3	Anisotropic Sliding Behaviors of Gas Bubbles upon Ferrofluidâ€Infused Orthonormal Tracks (FOTs) Under Magnetic Stimuli. Advanced Materials Interfaces, 2022, 9, .	3.7	4
4	A Biocompatible Vibrationâ€Actuated Omniâ€Droplets Rectifier with Large Volume Range Fabricated by Femtosecond Laser. Advanced Materials, 2022, 34, e2108567.	21.0	40
5	Robust Underwater Air Layer Retention and Restoration on <i>Salvinia</i> -Inspired Self-Grown Heterogeneous Architectures. ACS Nano, 2022, 16, 2730-2740.	14.6	18
6	Reconfigurable Magnetic Liquid Metal Robot for High-Performance Droplet Manipulation. Nano Letters, 2022, 22, 2923-2933.	9.1	57
7	Tailoring Optical Vortical Dichroism with Stereometamaterials. Laser and Photonics Reviews, 2022, 16,	8.7	8
8	Multifunctional microfluidic "Particle diodeâ€! One-way particle transport and particle filtration. Sensors and Actuators B: Chemical, 2022, 367, 132029.	7.8	1
9	Functional Shape-Morphing Microarchitectures Fabricated by Dynamic Holographically Shifted Femtosecond Multifoci. Nano Letters, 2022, 22, 5277-5286.	9.1	16
10	On-Demand Maneuvering of Diverse Prodrug Liquids on a Light-Responsive Candle-Soot-Hybridized Lubricant-Infused Slippery Surface for Highly Effective Toxicity Screening. ACS Applied Materials & Interfaces, 2022, 14, 31667-31676.	8.0	6
11	Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angewandte Chemie, 2021, 133, 3124-3131.	2.0	15
12	Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angewandte Chemie - International Edition, 2021, 60, 3087-3094.	13.8	41
13	Innenrücktitelbild: Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors (Angew. Chem. 6/2021). Angewandte Chemie, 2021, 133, 3351-3351.	2.0	0
14	Transparent Lightâ€Driven Hydrogel Actuator Based on Photothermal Marangoni Effect and Buoyancy Flow for Threeâ€Dimensional Motion. Advanced Functional Materials, 2021, 31, 2009386.	14.9	48
15	Light-driven Locomotion of Underwater Bubbles on Ultrarobust Paraffin-impregnated Laser-ablated Fe ₃ O ₄ -doped Slippery Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 9272-9280.	8.0	15
16	Controllable double-helical microstructures by photonic orbital angular momentum for chiroptical response. Optics Letters, 2021, 46, 1401.	3.3	9
17	Noncontact Allâ€Inâ€Situ Reversible Reconfiguration of Femtosecond Laserâ€Induced Shape Memory Magnetic Microcones for Multifunctional Liquid Droplet Manipulation and Information Encryption. Advanced Functional Materials, 2021, 31, 2100543.	14.9	51
18	Kirigami Structures of Shape Memory Polymer by Femtosecond Laser Scribing and Constrained Heating. Advanced Materials Technologies, 2021, 6, 2100200.	5.8	4

#	Article	IF	CITATIONS
19	Guiding the Patterned Growth of Neuronal Axons and Dendrites Using Anisotropic Micropillar Scaffolds. Advanced Healthcare Materials, 2021, 10, e2100094.	7.6	10
20	3D Multiscale Micro-/Nanofolds by Femtosecond Laser Intermittent Ablation and Constrained Heating on a Shape Memory Polymer. ACS Applied Materials & amp; Interfaces, 2021, 13, 23210-23219.	8.0	9
21	In Situ Electricâ€Induced Switchable Transparency and Wettability on Laserâ€Ablated Bioinspired Paraffinâ€Impregnated Slippery Surfaces. Advanced Science, 2021, 8, e2100701.	11.2	34
22	Magnetically driven rotary microfilter fabricated by two-photon polymerization for multimode filtering of particles. Optics Letters, 2021, 46, 2968.	3.3	6
23	Direct Generation of Airy Beams at Designed Fourier Planes Using Integrated Airy Phase Plates. IEEE Photonics Technology Letters, 2021, 33, 595-598.	2.5	4
24	High-Performance Ultrafine Bubble Aeration on Janus Aluminum Foil Prepared by Laser Microfabrication. Langmuir, 2021, 37, 6947-6952.	3.5	9
25	Magnetism-Actuated Superhydrophobic Flexible Microclaw: From Spatial Microdroplet Maneuvering to Cross-Species Control. ACS Applied Materials & amp; Interfaces, 2021, 13, 35165-35172.	8.0	9
26	Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light: Science and Applications, 2021, 10, 146.	16.6	42
27	Real-time capture of single particles in controlled flow by a rapidly generated foci array with adjustable intensity and pattern. Optics Letters, 2021, 46, 5308.	3.3	2
28	Femtosecond laser direct writing continuous phase vortex gratings with proportionally distributed diffraction energy. Applied Physics Letters, 2021, 119, .	3.3	1
29	Biomimetic Mechanoswitchable Interfaces for High-Performance Spatial Gas Bubble Maneuvering. ACS Applied Materials & Interfaces, 2021, 13, 43769-43776.	8.0	2
30	Reply to Comments on "Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method― Light: Science and Applications, 2021, 10, 13.	16.6	2
31	Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum. ACS Nano, 2021, 15, 2893-2900.	14.6	63
32	Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	62
33	Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment. ACS Nano, 2021, 15, 18048-18059.	14.6	94
34	Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation. Nano Letters, 2021, 21, 9301-9309.	9.1	22
35	3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification. Lab on A Chip, 2021, 21, 4805-4813.	6.0	5
36	Advanced microfluidic devices for fabricating multiâ€structural hydrogel microsphere. Exploration, 2021, 1, .	11.0	35

#	Article	IF	CITATIONS
37	Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale. Advanced Functional Materials, 2020, 30, 1907377.	14.9	122
38	Ultralow-Voltage-Driven Smart Control of Diverse Drop's Anisotropic Sliding by in Situ Switching Joule Heat on Paraffin-Infused Microgrooved Slippery Surface. ACS Applied Materials & Interfaces, 2020, 12, 1895-1904.	8.0	31
39	Femtosecond Laser-Assisted Top-Restricted Self-Growth Re-Entrant Structures on Shape Memory Polymer for Dynamic Pressure Resistance. Langmuir, 2020, 36, 12346-12356.	3.5	7
40	Efficient full-path optical calculation of scalar and vector diffraction using the Bluestein method. Light: Science and Applications, 2020, 9, 119.	16.6	38
41	Ultrathin and High-Stress-Resolution Liquid-Metal-Based Pressure Sensors with Simple Device Structures. ACS Applied Materials & amp; Interfaces, 2020, 12, 55390-55398.	8.0	27
42	Highâ€Performance Unidirectional Manipulation of Microdroplets by Horizontal Vibration on Femtosecond Laserâ€Induced Slant Microwall Arrays. Advanced Materials, 2020, 32, e2005039.	21.0	62
43	Chiral Microstructures: Chiral Assemblies of Laserâ€Printed Micropillars Directed by Asymmetrical Capillary Force (Adv. Mater. 31/2020). Advanced Materials, 2020, 32, 2070236.	21.0	0
44	Three-Dimensional Multifunctional Magnetically Responsive Liquid Manipulator Fabricated by Femtosecond Laser Writing and Soft Transfer. Nano Letters, 2020, 20, 7519-7529.	9.1	50
45	Cross-Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves. ACS Applied Materials & Interfaces, 2020, 12, 42264-42273.	8.0	33
46	High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces. Nano Letters, 2020, 20, 5513-5521.	9.1	63
47	Chiral Assemblies of Laserâ€Printed Micropillars Directed by Asymmetrical Capillary Force. Advanced Materials, 2020, 32, e2002356.	21.0	42
48	Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails. Applied Physics Letters, 2020, 116, .	3.3	18
49	Stimuli-Responsive Actuator Fabricated by Dynamic Asymmetric Femtosecond Bessel Beam for <i>In Situ</i> Particle and Cell Manipulation. ACS Nano, 2020, 14, 5233-5242.	14.6	87
50	Unidirectional Transport and Effective Collection of Underwater CO ₂ Bubbles Utilizing Ultrafast-Laser-Ablated Janus Foam. ACS Applied Materials & Interfaces, 2020, 12, 18110-18115.	8.0	34
51	In Situ Reversible Tuning from Pinned to Roll-Down Superhydrophobic States on a Thermal-Responsive Shape Memory Polymer by a Silver Nanowire Film. ACS Applied Materials & Interfaces, 2020, 12, 13464-13472.	8.0	55
52	Nanogap Plasmonic Structures Fabricated by Switchable Capillaryâ€Force Driven Selfâ€Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS. Advanced Functional Materials, 2020, 30, 1909467.	14.9	91
53	4D Printing: Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale (Adv. Funct. Mater. 4/2020). Advanced Functional Materials, 2020, 30, 2070026.	14.9	2
54	Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications. International Journal of Extreme Manufacturing, 2020, 2, 032002.	12.7	73

#	Article	IF	CITATIONS
55	Efficient fabrication of a high-aspect-ratio AFM tip by one-step exposure of a long focal depth holographic femtosecond axilens beam. Optics Letters, 2020, 45, 897.	3.3	8
56	Hybrid femtosecond laser fabrication of a size-tunable microtrap chip with a high-trapping retention rate. Optics Letters, 2020, 45, 1071.	3.3	14
57	Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures. Optics Letters, 2020, 45, 2584.	3.3	16
58	Rapid fabrication of high-resolution multi-scale microfluidic devices based on the scanning of patterned femtosecond laser. Optics Letters, 2020, 45, 3929.	3.3	5
59	Self-assembled micropillars fabricated by holographic femtosecond multi-foci beams forin situ trapping of microparticles. Optics Letters, 2020, 45, 4698.	3.3	13
60	Dynamic Airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing. Photonics Research, 2020, 8, 875.	7.0	20
61	Remote Photothermal Actuation of Underwater Bubble toward Arbitrary Direction on Planar Slippery Fe ₃ O ₄ â€Doped Surfaces. Advanced Functional Materials, 2019, 29, 1904766.	14.9	59
62	Digital flow rate sensor based on isovolumetric droplet discretization effect by a three-supersurface structure. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	5
63	Reversible Tuning between Isotropic and Anisotropic Sliding by One-Direction Mechanical Stretching on Microgrooved Slippery Surfaces. Langmuir, 2019, 35, 10625-10630.	3.5	31
64	Dualâ€Responsive Janus Membrane by Oneâ€Step Laser Drilling for Underwater Bubble Selective Capture and Repelling. Advanced Materials Interfaces, 2019, 6, 1901176.	3.7	20
65	Photothermal Actuation of Diverse Liquids on an Fe3O4-Doped Slippery Surface for Electric Switching and Cell Culture. Langmuir, 2019, 35, 13915-13922.	3.5	25
66	Smart Stretchable Janus Membranes with Tunable Collection Rate for Fog Harvesting. Advanced Materials Interfaces, 2019, 6, 1901465.	3.7	34
67	Targeted Single ell Therapeutics with Magnetic Tubular Micromotor by One tep Exposure of Structured Femtosecond Optical Vortices. Advanced Functional Materials, 2019, 29, 1905745.	14.9	54
68	Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nature Communications, 2019, 10, 4193.	12.8	114
69	Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture. Nanoscale, 2019, 11, 1370-1378.	5.6	74
70	Multifunctional Janus Microplates Arrays Actuated by Magnetic Fields for Water/Light Switches and Bioâ€Inspired Assimilatory Coloration. Advanced Materials, 2019, 31, e1807507.	21.0	144
71	Erratum to "Femtosecond Laser Direct Ablating Micro/Nanostructures and Micropatterns on CH ₃ NH ₃ PbI ₃ Single Crystal―[Apr 17 Art. no. 2400110]. IEEE Photonics Journal, 2019, 11, 1-2.	2.0	0
72	Microholeâ€Arrayed PDMS with Controllable Wettability Gradient by Oneâ€Step Femtosecond Laser Drilling for Ultrafast Underwater Bubble Unidirectional Selfâ€Transport. Advanced Materials Interfaces, 2019, 6, 1900297.	3.7	47

#	Article	IF	CITATIONS
73	Multilayered skyscraper microchips fabricated by hybrid "all-in-one―femtosecond laser processing. Microsystems and Nanoengineering, 2019, 5, 17.	7.0	19
74	Anisotropic Sliding of Underwater Bubbles On Microgrooved Slippery Surfaces by One-Step Femtosecond Laser Scanning. ACS Applied Materials & Interfaces, 2019, 11, 20574-20580.	8.0	43
75	Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery. Advanced Materials, 2019, 31, e1808226.	21.0	89
76	Channel-controlled Janus membrane fabricated by simultaneous laser ablation and nanoparticles deposition for underwater bubbles manipulation. Applied Physics Letters, 2019, 114, .	3.3	17
77	<i>In Situ</i> Reversible Control between Sliding and Pinning for Diverse Liquids under Ultra-Low Voltage. ACS Nano, 2019, 13, 5742-5752.	14.6	73
78	Femtosecond Mathieu Beams for Rapid Controllable Fabrication of Complex Microcages and Application in Trapping Microobjects. ACS Nano, 2019, 13, 4667-4676.	14.6	63
79	Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale, 2019, 11, 4803-4810.	5.6	63
80	Tunable microfluidic device fabricated by femtosecond structured light for particle and cell manipulation. Lab on A Chip, 2019, 19, 3988-3996.	6.0	14
81	Holographic femtosecond laser integration of microtube arrays inside a hollow needle as a lab-in-a-needle device. Optics Letters, 2019, 44, 5073.	3.3	12
82	Fabricating Nanogap for SERS by Combing Laser Printing with Capillary-Force Self-Assembly on Soft Base. , 2019, , .		1
83	Integration of functional microstructures inside a microfluidic chip by direct femtosecond laser writing. , 2019, , .		0
84	Allâ€Class 3D Optofluidic Microchip with Builtâ€in Tunable Microlens Fabricated by Femtosecond Laserâ€Assisted Etching. Advanced Optical Materials, 2018, 6, 1701299.	7.3	61
85	Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning. ACS Applied Materials & Interfaces, 2018, 10, 16867-16873.	8.0	65
86	Pillar-Assisted Construction of a Three-Dimensional Framework from a Two-Dimensional Bilayer Based on a Zn/Cd Heterometal Cluster: Pore Tuning and Gas Adsorption. Crystal Growth and Design, 2018, 18, 1826-1833.	3.0	6
87	Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. Lab on A Chip, 2018, 18, 442-450.	6.0	35
88	<i>In situ</i> tunable bubble wettability with fast response induced by solution surface tension. Journal of Materials Chemistry A, 2018, 6, 20878-20886.	10.3	30
89	Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment. Applied Physics Letters, 2018, 113, .	3.3	32
90	Capillary-assisted localized crystallization on discrete micropillar rings. Applied Physics Letters, 2018, 113, .	3.3	4

#	Article	IF	CITATIONS
91	Mechanical-Tunable Capillary-Force-Driven Self-Assembled Hierarchical Structures on Soft Substrate. ACS Nano, 2018, 12, 10142-10150.	14.6	29
92	Localized Selfâ€Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shapeâ€Memory Polymer. Advanced Materials, 2018, 30, e1803072.	21.0	55
93	Microtubes with Complex Cross Section Fabricated by C-Shaped Bessel Laser Beam for Mimicking Stomata That Opens and Closes Rapidly. ACS Applied Materials & Interfaces, 2018, 10, 36369-36376.	8.0	17
94	3D Biomimetic Chips for Cancer Cell Migration in Nanometer-Sized Spaces Using "Ship-in-a-Bottle― Femtosecond Laser Processing. ACS Applied Bio Materials, 2018, 1, 1667-1676.	4.6	15
95	Generation of colorful Airy beams and Airy imaging of letters via two-photon processed cubic phase plates. Optics Letters, 2018, 43, 1151.	3.3	21
96	Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12, 596-600.	31.4	224
97	High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth. Optics Letters, 2018, 43, 3514.	3.3	18
98	Multifunctional oil-water and immiscible organic liquid separation by micropore arrayed Ti foil. Applied Surface Science, 2018, 455, 221-226.	6.1	12
99	Flexible and rapid fabrication of silver microheaters with spatial-modulated multifoci by femtosecond laser multiphoton reduction. Optics Letters, 2018, 43, 5335.	3.3	10
100	High-quality microhole arrays by water-assisted femtosecond laser perforating for improved particle sorting. Optical Engineering, 2018, 57, 1.	1.0	0
101	Micro and nano-biomimetic structures for cell migration study fabricated by hybrid subtractive and additive 3D femtosecond laser processing. Proceedings of SPIE, 2017, , .	0.8	3
102	Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laserÂirradiation for enhanced water collection. RSC Advances, 2017, 7, 11170-11179.	3.6	63
103	Self‣ealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Lineâ€Contact Capillaryâ€Force Assembly. Small, 2017, 13, 1603957.	10.0	22
104	Femtosecond Laser Direct Ablating Micro/Nanostructures and Micropatterns on CH3NH3 PbI3 Single Crystal. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	3
105	Three-level cobblestone-like TiO2 micro/nanocones for dual-responsive water/oil reversible wetting without fluorination. Applied Physics Letters, 2017, 111, .	3.3	18
106	Multifurcate Assembly of Slanted Micropillars Fabricated by Superposition of Optical Vortices and Application in Highâ€Efficiency Trapping Microparticles. Advanced Functional Materials, 2017, 27, 1701939.	14.9	24
107	Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light: Science and Applications, 2017, 6, e17011-e17011.	16.6	201
108	A Janus oil barrel with tapered microhole arrays for spontaneous high-flux spilled oil absorption and storage. Nanoscale, 2017, 9, 15796-15803.	5.6	57

#	Article	IF	CITATIONS
109	Dimension ontrollable Microtube Arrays by Dynamic Holographic Processing as 3D Yeast Culture Scaffolds for Asymmetrical Growth Regulation. Small, 2017, 13, 1701190.	10.0	26
110	A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection. Journal of Materials Chemistry A, 2017, 5, 18403-18408.	10.3	103
111	Optical superimposed vortex beams generated by integrated holographic plates with blazed grating. Applied Physics Letters, 2017, 111, 061901.	3.3	8
112	A facile strategy to integrate robust porous aluminum foil into microfluidic chip for sorting particles. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	4
113	Ultrafast Laser Fabrication of Functional Biochips: New Avenues for Exploring 3D Micro- and Nano-Environments. Micromachines, 2017, 8, 40.	2.9	18
114	High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Optics Express, 2017, 25, 8144.	3.4	33
115	Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Optics Express, 2017, 25, 16739.	3.4	27
116	Continuous cubic phase microplates for generating high-quality Airy beams with strong deflection. Optics Letters, 2017, 42, 2483.	3.3	18
117	Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam. Optics Letters, 2017, 42, 743.	3.3	49
118	Direct laser writing of complex microtubes using femtosecond vortex beams. Applied Physics Letters, 2017, 110, .	3.3	40
119	Two-stage optical recording: photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory. Optics Express, 2016, 24, 23557.	3.4	12
120	Highly uniform parallel microfabrication using a large numerical aperture system. Applied Physics Letters, 2016, 109, .	3.3	9
121	One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation. RSC Advances, 2016, 6, 37463-37471.	3.6	29
122	Direct cellular organization with ring-shaped composite polymers and glass substrates for urethral sphincter tissue engineering. Journal of Materials Chemistry B, 2016, 4, 3998-4008.	5.8	5
123	Systematic shape evolution of Co ₃ O ₄ nanocrystals from octahedra to spheres under the influence of C ₂ O ₄ ^{2â^'} and PVP. CrystEngComm, 2016, 18, 9299-9306.	2.6	12
124	High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports, 2016, 6, 19989.	3.3	58
125	Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Scientific Reports, 2016, 6, 33281.	3.3	42
126	Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration. Journal of Materials Chemistry A, 2016, 4, 18832-18840.	10.3	92

#	Article	IF	CITATIONS
127	Synthesis and catalytic property of facet-controlled Co ₃ O ₄ structures enclosed by (111) and (113) facets. CrystEngComm, 2016, 18, 5456-5462.	2.6	16
128	Single-exposure multiphoton fabrication of polygonized structures by an SLM-modulated Fresnel zone lens. Optical Engineering, 2016, 55, 035102.	1.0	3
129	Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6876-6881.	7.1	87
130	In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light: Science and Applications, 2015, 4, e228-e228.	16.6	107
131	Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. Lab on A Chip, 2015, 15, 1515-1523.	6.0	64
132	Restructuring of Co3O4particles from polycrystalline microspheres to single-crystalline polyhedra under the assistance of acetic acid. CrystEngComm, 2015, 17, 1848-1855.	2.6	6
133	Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation. Journal of Materials Chemistry A, 2015, 3, 18675-18683.	10.3	84
134	Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips. , 2015, , .		4
135	Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis. RSC Advances, 2015, 5, 24072-24080.	3.6	93
136	Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles. ACS Nano, 2015, 9, 12060-12069.	14.6	47
137	Hybrid Subtractive and Additive Micromanufacturing using Femtosecond Laser for Fabrication of True 3D Biochips. , 2015, , .		0
138	Large-Area One-Step Assembly of Three-Dimensional Porous Metal Micro/Nanocages by Ethanol-Assisted Femtosecond Laser Irradiation for Enhanced Antireflection and Hydrophobicity. ACS Applied Materials & Interfaces, 2015, 7, 383-390.	8.0	55
139	Single-crystalline dodecahedral α-Fe2O3 particles with nanometer size: synthesis and characterization. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	3
140	An improved multi-exposure approach for high quality holographic femtosecond laser patterning. Applied Physics Letters, 2014, 105, .	3.3	28
141	Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of shipâ€inâ€aâ€bottle biochip. Laser and Photonics Reviews, 2014, 8, 458-467.	8.7	126
142	Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab on A Chip, 2014, 14, 3447-3458.	6.0	190
143	Bioinspired Fabrication of Highâ€Quality 3D Artificial Compound Eyes by Voxelâ€Modulation Femtosecond Laser Writing for Distortionâ€Free Wideâ€Fieldâ€ofâ€View Imaging. Advanced Optical Materials, 2014, 2, 751-758.	7.3	134
144	Feasibility and mechanism of p-nitrophenol decomposition in aqueous dispersions of ferrihydrite and H2O2 under irradiation. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 87-99.	1.7	19

#	Article	IF	CITATIONS
145	Mechanical stretch for tunable wetting from topological PDMS film. Soft Matter, 2013, 9, 4236.	2.7	36
146	Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing. Lab on A Chip, 2013, 13, 4608.	6.0	103
147	Hexagonal α-Fe2O3 nanorods bound by high-index facets as high-performance electrochemical sensor. Journal of Materials Chemistry A, 2013, 1, 3040.	10.3	36
148	Fast production of β-Ni(OH)2 nanostructures with (001) and (100) plane exposure and their electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 5695.	10.3	26
149	Synthesis and properties of octahedral Co3O4 single-crystalline nanoparticles enclosed by (111) facets. CrystEngComm, 2013, 15, 8337.	2.6	32
150	Rapid, Controllable Fabrication of Regular Complex Microarchitectures by Capillary Assembly of Micropillars and Their Application in Selectively Trapping/Releasing Microparticles. Small, 2013, 9, 760-767.	10.0	25
151	Enhanced visible photocatalytic activity of titania–silica photocatalysts: effect of carbon and silver doping. Catalysis Science and Technology, 2012, 2, 1213.	4.1	62
152	Precisely tailoring dendritic α-Fe2O3 structures along [101̄0] directions. CrystEngComm, 2012, 14, 4074.	2.6	16
153	Preparation and Properties of Octadecahedral αâ€Fe ₂ O ₃ Nanoparticles Enclosed by {104} and {112} Facets. European Journal of Inorganic Chemistry, 2012, 2012, 4076-4081.	2.0	21
154	Morphology evolution of α-Fe2O3 nanoparticles: the effect of dihydrogen phosphate anions. CrystEngComm, 2011, 13, 7293.	2.6	18
155	Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels. Lab on A Chip, 2011, 11, 3873.	6.0	127
156	Simultaneous efficiency enhancement and self-cleaning effect of white organic light-emitting devices by flexible antireflective films. Optics Letters, 2011, 36, 2635.	3.3	21
157	Three‣evel Biomimetic Rice‣eaf Surfaces with Controllable Anisotropic Sliding. Advanced Functional Materials, 2011, 21, 2927-2932.	14.9	251
158	Curvatureâ€Driven Reversible In Situ Switching Between Pinned and Rollâ€Down Superhydrophobic States for Water Droplet Transportation. Advanced Materials, 2011, 23, 545-549.	21.0	268
159	Reversible switching between isotropic and anisotropic wetting by one-direction curvature tuning on flexible superhydrophobic surfaces. Applied Physics Letters, 2011, 98, .	3.3	22
160	Hydrophobic mesoporous silica applied in GC separation of hexene isomers. Journal of Sol-Gel Science and Technology, 2010, 56, 93-98.	2.4	7
161	Singleâ€Crystalline Dodecahedral and Octodecahedralαâ€Fe ₂ O ₃ Particles Synthesized by a Fluoride Anion–Assisted Hydrothermal Method. Advanced Functional Materials, 2010, 20, 3987-3996.	14.9	176
162	High numerical aperture microlens arrays of close packing. Applied Physics Letters, 2010, 97, .	3.3	143

#	Article	IF	CITATIONS
163	A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. Applied Physics Letters, 2010, 96, .	3.3	49
164	Notice of Retraction: Analyses of car fuel consumption based on driving cycles. , 2010, , .		0
165	A facile approach for artificial biomimetic surfaces with both superhydrophobicity and iridescence. Soft Matter, 2010, 6, 263-267.	2.7	72
166	One-Step Preparation of Regular Micropearl Arrays for Two-Direction Controllable Anisotropic Wetting. Langmuir, 2010, 26, 12012-12016.	3.5	73
167	Self-organization of polymer nanoneedles into large-area ordered flowerlike arrays. Applied Physics Letters, 2009, 95, 091902.	3.3	35
168	Three-dimensional micronanofabrication via two-photon-excited photoisomerization. Applied Physics Letters, 2009, 95, 083118.	3.3	12
169	Femtosecond laser-induced two-photon polymerization: A new avenue towards microoptics and micromechanics. , 2009, , .		Ο
170	Thermalâ€shrinkage investigation of the chemical reaction during the stabilization of polyacrylonitrile fibers. Journal of Applied Polymer Science, 2009, 114, 3668-3672.	2.6	22
171	100% Fill-Factor Aspheric Microlens Arrays (AMLA) With Sub-20-nm Precision. IEEE Photonics Technology Letters, 2009, 21, 1535-1537.	2.5	58
172	Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab on A Chip, 2009, 9, 2391.	6.0	162
173	Polyvinylpyrrolidone/ZrO2-based sol–gel films applied in highly reflective mirrors for inertial confinement fusion. Journal of Sol-Gel Science and Technology, 2008, 47, 173-181.	2.4	15
174	A new method for the kinetic study of cyclization reaction during stabilization of polyacrylonitrile fibers. Journal of Materials Science, 2008, 43, 4910-4914.	3.7	19
175	A Simple Non-Aqueous Route to Anatase TiO2. European Journal of Inorganic Chemistry, 2008, 2008, 1236-1240.	2.0	37
176	Influence of ozone on chemical reactions during the stabilization of polyacrylonitrile as a carbon fiber precursor. Journal of Applied Polymer Science, 2008, 108, 3990-3996.	2.6	11
177	Tuning pore size and hydrophobicity of macroporous hybrid silica films with high optical transmittance by a non-template route. Journal of Materials Chemistry, 2008, 18, 5557.	6.7	22
178	High efficiency multilevel phase-type fractal zone plates. Optics Letters, 2008, 33, 2913.	3.3	63
179	Hydrothermal Preparation of Visible-Light-Driven N-Br-Codoped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>TiO</mml:mtext><mml:mtext International Journal of Photoenergy, 2008, 2008, 1-7.</mml:mtext </mml:msub></mml:math 	t>2 ع/ه ml: 	mt exit >
180	Super Hydrophobic Mesoporous Silica with Anchored Methyl Groups on the Surface by a One-Step Synthesis without Surfactant Template. Journal of Physical Chemistry C, 2007, 111, 999-1004.	3.1	42

#	Article	IF	CITATIONS
181	Phase lenses and mirrors created by laser micronanofabrication via two-photon photon photopolymerization. Applied Physics Letters, 2007, 91, 171105.	3.3	51
182	A new study on the kinetics of Stöber synthesis by in-situ liquid 29Si NMR. Journal of Sol-Gel Science and Technology, 2007, 42, 13-20.	2.4	12
183	Selective Synthesis of Wurtzite CdSe Nanorods and Zinc Blend CdSe Nanocrystals through a Convenient Solvothermal Route. Journal of Nanoparticle Research, 2007, 9, 745-752.	1.9	25
184	Synthesis and characterization of ultralong lanthanum hydroxide nanorods via solvothermal method. Journal of Materials Science, 2007, 42, 1397-1400.	3.7	17
185	Ammonia Catalyzed Hydrolysis-Condensation Kinetics of Tetraethoxysilane/Dimethyldiethoxysilane Mixtures Studied by 29 Si NMR and SAXS. Journal of Solution Chemistry, 2007, 36, 327-344.	1.2	24
186	Toughening of Polycarbonate with Organic-Inorganic Hybrid Materials. Polymers and Polymer Composites, 2006, 14, 291-300.	1.9	0
187	Comparative study on the structural, acidic and catalytic properties of nano-sized and large-particulate mesoporous aluminosilicates. Topics in Catalysis, 2006, 39, 227-235.	2.8	13
188	Size-controllable barium titanate nanopowder synthesized via one-pot solvothermal route in a mixed solvent. Journal of Electroceramics, 2006, 16, 127-133.	2.0	9
189	Highly moisture-proof polysilsesquioxane coating prepared via facile sol-gel process. Journal of Coatings Technology Research, 2006, 3, 127-131.	2.5	3
190	IN SITU ASSEMBLY OF ZnS NANOFIBERS WITH HIGHLY ORDERED LAMELLAR MESOSTRUCTURE. International Journal of Nanoscience, 2006, 05, 245-251.	0.7	3
191	SYNTHESIS AND CHARACTERIZATION OF POLY(BUTYL ACRYLATE-CO-METHYL METHACRYLATE)/CLAY NANOCOMPOSITES VIA EMULSION POLYMERIZATION. International Journal of Nanoscience, 2006, 05, 291-297.	0.7	8
192	Additional Incorporation of Aluminum into Al-Containing Mesostructure via Hydrothermal Treatment with NaAlO2 Solution. Journal of Porous Materials, 2005, 12, 107-112.	2.6	2
193	Studies of Fe-doped SiO2/TiO2 composite nanoparticles prepared by sol-gel-hydrothermal method. Journal of Materials Science, 2005, 40, 3939-3943.	3.7	24
194	Sol?Gel Synthesis of Methyl Modified Optical Silica Coatings and Gels from DDS and TEOS. Journal of Sol-Gel Science and Technology, 2005, 33, 19-24.	2.4	33
195	Preparation and Catalytic Performance of Mesostructured Aluminosilicate Nano-particles with Wormhole-Like Framework Structure. Catalysis Letters, 2004, 93, 225-229.	2.6	16
196	Mixed Cationic-Nonionic Surfactants Route to MCM-48: Effect of the Nonionic Surfactant on the Structural Properties. Journal of Sol-Gel Science and Technology, 2004, 30, 149-155.	2.4	7
197	Title is missing!. Journal of Materials Science Letters, 2003, 22, 955-957.	0.5	7
198	Direct synthesis of mesoporous organosilica from sodium silicate and organotrialkoxysilane. Journal of Materials Science Letters, 2003, 22, 1229-1231.	0.5	5

#	Article	IF	CITATIONS
199	Title is missing!. Catalysis Letters, 2003, 89, 261-267.	2.6	19
200	Determination of SiO2 colloid core size by SAXS. Journal of Materials Science Letters, 2003, 22, 33-35.	0.5	8
201	Synthesis of phenyl-MSU-1 and bi-functionalized silica mesophases. Journal of Materials Research, 2002, 17, 431-437.	2.6	10
202	SAXS analysis of interface in organo-modified mesoporous silica. Surface and Interface Analysis, 2001, 31, 897-900.	1.8	22
203	Multiphasic Acetalization and Alkylation on Organically Modified MSU-X Silica. Catalysis Letters, 2001, 74, 213-216.	2.6	14
204	Correction of negative deviation from Debye's theory. Journal of Materials Science Letters, 2001, 20, 2243-2244.	0.5	5
205	Determination of specific surfaces of silica xerogets by SAXS. Science Bulletin, 2000, 45, 1386-1390.	1.7	8
206	Stable nanocrystalline zirconia sols prepared by a novel method: Alcohol thermal synthesis. Journal of Materials Research, 2000, 15, 402-406.	2.6	29
207	Preparation of mesocarbon microbeads from coal tar. Journal of Materials Science, 1999, 34, 4043-4050.	3.7	18
208	ZrO ₂ -SiO ₂ Coatings for Wavelength-Selective Reflection Filter. Molecular Crystals and Liquid Crystals, 1999, 337, 497-500.	0.3	1
209	Nano-Sized SiO2 Sol-Gel for Structure-Controlled Optical Coatings. Molecular Crystals and Liquid Crystals, 1999, 337, 85-88.	0.3	0
210	Structure Control of SiO2 Sol-Gels via Addition of PEG. Studies in Surface Science and Catalysis, 1998, 118, 617-624.	1.5	19