Matti Niemelä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4092880/publications.pdf

Version: 2024-02-01

623734 642732 34 588 14 23 citations g-index h-index papers 34 34 34 800 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Response of wheat and barley seedlings on soil contamination with bromides. Environmental Geochemistry and Health, 2022, 44, 537-550.	3.4	3
2	Bioavailability and toxicity of bromine and neodymium for plants grown in soil and water. Environmental Geochemistry and Health, 2022, 44, 285-293.	3.4	5
3	Determination of Ethyl Xanthate in Aqueous Solution by High Performance Liquid Chromatography–Inductively Coupled Plasma–Tandem Mass Spectrometry and Spectrophotometry. Analytical Letters, 2022, 55, 1857-1871.	1.8	7
4	The effect of experimental conditions on the formation of dixanthogen by triiodide oxidation in the determination of ethyl xanthate by HPLC–ICP-MS/MS. Analytical Sciences, 2022, 38, 1221-1231.	1.6	2
5	Comparison between Fluorescence Imaging and Elemental Analysis to Determine Biodistribution of Inorganic Nanoparticles with Strong Light Absorption. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40392-40400.	8.0	5
6	Antimicrobial Colloidal Silver–Lignin Particles via Ion and Solvent Exchange. ACS Sustainable Chemistry and Engineering, 2019, 7, 15297-15303.	6.7	24
7	Effects of bromides of potassium and ammonium on some crops. Journal of Plant Nutrition, 2019, 42, 2209-2220.	1.9	2
8	Microwave-assisted conversion of novel biomass materials into levulinic acid. Biomass Conversion and Biorefinery, 2018, 8, 965-970.	4.6	17
9	Potential of wheat (<i>Triticum aestivum</i> L.) and pea (<i>Pisum sativum</i>) for remediation of soils contaminated with bromides and PAHs. International Journal of Phytoremediation, 2018, 20, 560-566.	3.1	12
10	Phytoextration of bromine from contaminated soil. Journal of Geochemical Exploration, 2017, 174, 21-28.	3.2	24
11	Nano-TiO 2 catalyzed UV-LED sample pretreatment method for decomposition of humic substances in natural water samples. Microchemical Journal, 2017, 133, 645-649.	4.5	2
12	Preparation of cationized starch from food industry waste biomass and its utilization in sulfate removal from aqueous solution. Carbohydrate Polymers, 2017, 178, 331-337.	10.2	10
13	Active biomonitoring of palladium, platinum, and rhodium emissions from road traffic using transplanted moss. Environmental Science and Pollution Research, 2016, 23, 16790-16801.	5. 3	19
14	Internal standardization using a dual mode sample introduction system in the determination of As by HG-ICP-MS. Microchemical Journal, 2016, 129, 117-122.	4. 5	4
15	Binding of some heavy metal ions in aqueous solution with cationized or sulphonylated starch or waste starch. Starch/Staerke, 2016, 68, 900-908.	2.1	7
16	Elimination of Interferences in the Determination of Palladium, Platinum and Rhodium Mass Fractions in Moss Samples using <scp>ICP</scp> â€ <scp>MS</scp> / <scp>MS</scp> . Geostandards and Geoanalytical Research, 2016, 40, 559-569.	3.1	23
17	1H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride. Carbohydrate Polymers, 2016, 136, 721-727.	10.2	11
18	Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy, 2015, 154, 56-62.	4.3	85

#	Article	IF	CITATIONS
19	Response of wheat and pea seedlings on increase of bromine concentration in the growth medium. Environmental Science and Pollution Research, 2015, 22, 19060-19068.	5.3	9
20	Cloud point extraction of platinum group elements and gold: elimination of nitric acid-related problems with sulphamic acid. Analytical Methods, 2014, 6, 9321-9327.	2.7	5
21	Comparison of digestion methods for the determination of ruthenium in catalyst materials. Talanta, 2014, 119, 425-429.	5.5	27
22	Effects of soil amendments on antimony uptake by wheat. Journal of Soils and Sediments, 2014, 14, 679-686.	3.0	15
23	Development of an Efficient Acid Digestion Procedure Utilizing High-Pressure Asher Technique for the Determination of Iodine and Metallic Elements in Milk Powder. Food Analytical Methods, 2014, 7, 1103-1108.	2.6	11
24	Determination of Trace Impurities in Germanium Dioxide by ICP-OES, ICP-MS and ETAAS after Matrix Volatilization: A Long-run Performance of the Method. Analytical Sciences, 2014, 30, 735-738.	1.6	11
25	The use of a dual mode sample introduction system for internal standardization in the determination of Hg at the ngÂLâ^1 level by cold vapor ICP-MS. Analytical Methods, 2013, 5, 3082.	2.7	8
26	Development and optimization of a method for detecting low mercury concentrations in humic-rich natural water samples using a CV-ICP-MS technique. Microchemical Journal, 2012, 103, 165-169.	4.5	21
27	Determination of boron and lithium in ferroelectric samples by ICP-OES and ICP-MS. Mikrochimica Acta, 2009, 164, 217-224.	5.0	4
28	Determination of Pt from coke samples by ICP-MS after microwave assisted digestion and microwave assisted cloud point extraction. Mikrochimica Acta, 2009, 166, 255-260.	5.0	14
29	Comparison of Microwave-Assisted Digestion Methods and Selection of Internal Standards for the Determination of Rh, Pd and Pt in Dust Samples by ICP-MS. Mikrochimica Acta, 2005, 150, 211-217.	5.0	36
30	The use of Scots pine (Pinus sylvestrisL.) bark as a bioindicator for environmental pollution monitoring along two industrial gradients in the Kemi–Tornio area, northern Finland. International Journal of Environmental Analytical Chemistry, 2005, 85, 127-139.	3.3	16
31	Development of analytical methods for the determination of sub-ppm concentrations of palladium and iron in methotrexate. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35, 433-439.	2.8	28
32	Determination of platinum and rhodium in dust and plant samples using microwave-assisted sample digestion and ICP-MS. Analytica Chimica Acta, 2004, 521, 137-142.	5.4	73
33	Microwave sample-digestion procedure for determination of arsenic in moss samples using electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 2003, 375, 673-678.	3.7	10
34	Determination of arsenic, iron and selenium in moss samples using hexapole collision cell, inductively coupled plasma–mass spectrometry. Analytica Chimica Acta, 2003, 493, 3-12.	5.4	38