Tomasz Kowalewski

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4092719/tomasz-kowalewski-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

192 14,143 66 115 g-index

200 14,878 8 6.27 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
192	Design, synthesis, and properties of a six-membered oligofuran macrocycle. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 1775-1782	5.2	2
191	Cu-Catalyzed Atom Transfer Radical Polymerization in the Presence of Liquid Metal Micro/Nanodroplets. <i>Macromolecules</i> , 2021 , 54, 1631-1638	5.5	9
190	Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents. <i>Frontiers in Chemistry</i> , 2021 , 9, 734076	5	3
189	Multiblock Copolymer Anion-Exchange Membranes Derived from Vinyl Addition Polynorbornenes. <i>ACS Applied Energy Materials</i> , 2021 , 4, 10273-10279	6.1	4
188	Fe-Doped Copolymer-Templated Nitrogen-Rich Carbon as a PGM-Free Fuel Cell Catalyst. <i>ACS Applied Energy Materials</i> , 2021 , 4, 9653-9663	6.1	1
187	Understanding the origin of softness in structurally tailored and engineered macromolecular (STEM) gels: A DPD study. <i>Polymer</i> , 2020 , 208, 122909	3.9	0
186	High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides. <i>ACS Catalysis</i> , 2020 , 10, 6977-6987	13.1	16
185	STEM Gels by Controlled Radical Polymerization. <i>Trends in Chemistry</i> , 2020 , 2, 341-353	14.8	18
184	Copolymer-Derived N/B Co-Doped Nanocarbons with Controlled Porosity and Highly Active Surface. <i>Journal of Polymer Science</i> , 2020 , 58, 225-232	2.4	4
183	Preparation of Nitrogen-Doped Mesoporous Carbon for the Efficient Removal of Bilirubin in Hemoperfusion <i>ACS Applied Bio Materials</i> , 2020 , 3, 1036-1043	4.1	10
182	Exploring the Effects of Bulky Cations Tethered to Semicrystalline Polymers: The Case of Tetraaminophosphoniums with Ring-Opened Polynorbornenes. <i>Macromolecules</i> , 2020 , 53, 8509-8518	5.5	9
181	Polyene-Free Photoluminescent Polymers via Hydrothermal Hydrolysis of Polyacrylonitrile in Neutral Water. <i>ACS Macro Letters</i> , 2020 , 9, 1403-1408	6.6	4
180	Beware the nanovoids. <i>Nature Materials</i> , 2019 , 18, 1154-1155	27	1
179	Photostable Helical Polyfurans. Journal of the American Chemical Society, 2019, 141, 8858-8867	16.4	20
178	Transformation of gels via catalyst-free selective RAFT photoactivation. <i>Polymer Chemistry</i> , 2019 , 10, 2477-2483	4.9	40
177	Well-Defined N/S Co-Doped Nanocarbons from Sulfurized PAN-b-PBA Block Copolymers: Structure and Supercapacitor Performance. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2467-2474	5.6	18
176	Polyacrylonitrile-derived nanostructured carbon materials. <i>Progress in Polymer Science</i> , 2019 , 92, 89-13	4 29.6	50

175	Non-Tacky Fluorinated and Elastomeric STEM Networks. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800876	4.8	12	
174	A facile route to well-dispersed Ru nanoparticles embedded in self-templated mesoporous carbons for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20208-20222	13	14	
173	Soft-Templated Tellurium-Doped Mesoporous Carbon as a Pt-Free Electrocatalyst for High-Performance Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Discrete Amplitudes</i> , 11, 2093-21	1 02 5	27	
172	Polymer-Based Synthetic Routes to Carbon-Based Metal-Free Catalysts. <i>Advanced Materials</i> , 2019 , 31, e1804626	24	26	
171	Tuning the molecular weight distribution from atom transfer radical polymerization using deep reinforcement learning. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 496-508	4.6	25	
170	Organosilica with Grafted Polyacrylonitrile Brushes for High Surface Area Nitrogen-Enriched Nanoporous Carbons. <i>Chemistry of Materials</i> , 2018 , 30, 2208-2212	9.6	18	
169	Copolymer-Templated Synthesis of Nitrogen-Doped Mesoporous Carbons for Enhanced Adsorption of Hexavalent Chromium and Uranium. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2536-2543	5.6	26	
168	Transformable Materials: Structurally Tailored and Engineered Macromolecular (STEM) Gels by Controlled Radical Polymerization. <i>Macromolecules</i> , 2018 , 51, 3808-3817	5.5	39	
167	Common Carbons as Water-Reducing Catalysts in Photo-Driven Hydrogen Evolution with Nitrogen-Dependent Activity. <i>ChemNanoMat</i> , 2018 , 4, 1039-1042	3.5	1	
166	Impact of Precise Control over Microstructure in ThiopheneBelenophene Copolymers. Macromolecules, 2018, 51, 9494-9501	5.5	12	
165	Structurally Tailored and Engineered Macromolecular (STEM) Gels as Soft Elastomers and Hard/Soft Interfaces. <i>Macromolecules</i> , 2018 , 51, 9184-9191	5.5	24	
164	Catalyst-Free Selective Photoactivation of RAFT Polymerization: A Facile Route for Preparation of Comblike and Bottlebrush Polymers. <i>Macromolecules</i> , 2018 , 51, 7776-7784	5.5	43	
163	Nanocarbons from Synthetic Polymer Precursors and Their Catalytic Properties 2018 , 133-166			
162	Osteoconductive Enhancement of Polyether Ether Ketone: A Mild Covalent Surface Modification Approach <i>ACS Applied Bio Materials</i> , 2018 , 1, 1047-1055	4.1	10	
161	Modeling the formation of layered, amphiphilic gels. <i>Polymer</i> , 2017 , 111, 214-221	3.9	13	
160	Mesoporous nitrogen-doped carbons from PAN-based molecular bottlebrushes. <i>Polymer</i> , 2017 , 126, 352-359	3.9	21	
159	Polyacrylonitrile-b-poly(butyl acrylate) Block Copolymers as Precursors to Mesoporous Nitrogen-Doped Carbons: Synthesis and Nanostructure. <i>Macromolecules</i> , 2017 , 50, 2759-2767	5.5	43	
158	Kinetics of the temperature-induced volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels of various topologies. <i>Polymer</i> , 2017 , 110, 25-35	3.9	9	

157	Individual Nanoporous Carbon Spheres with High Nitrogen Content from Polyacrylonitrile Nanoparticles with Sacrificial Protective Layers. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2017 , 9, 37804-	-39812	18
156	Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. <i>Polymer</i> , 2017 , 126, 224-230	3.9	20
155	Facile Aqueous Route to Nitrogen-Doped Mesoporous Carbons. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12931-12934	16.4	73
154	Benzo[1,2-b:4,5-b?]difuran and furan substituted diketopyrrolopyrrole alternating copolymer for organic photovoltaics with high fill factor. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15591-15600	13	21
153	Combining ATRP and FRP Gels: Soft Gluing of Polymeric Materials for the Fabrication of Stackable Gels. <i>Polymers</i> , 2017 , 9,	4.5	9
152	In-Situ Platinum Deposition on Nitrogen-Doped Carbon Films as a Source of Catalytic Activity in a Hydrogen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 21531-8	9.5	45
151	Controlled Preparation of Well-Defined Mesoporous Carbon/Polymer Hybrids via Surface-Initiated ICAR ATRP with a High Dilution Strategy Assisted by Facile Polydopamine Chemistry. Macromolecules, 2016, 49, 8943-8950	5.5	23
150	Systematic Investigation of Benzodithiophene-Benzothiadiazole Isomers for Organic Photovoltaics. <i>ACS Applied Materials & District Mate</i>	9.5	13
149	Synthesis of Polyfuran and Thiophene-Furan Alternating Copolymers Using Catalyst-Transfer Polycondensation. <i>ACS Macro Letters</i> , 2016 , 5, 332-336	6.6	33
148	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance 2016 , 1-19		
147	Conjugated Polymers with Repeated Sequences of Group 16 Heterocycles Synthesized through Catalyst-Transfer Polycondensation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6798-804	16.4	62
146	Miktoarm star copolymers as interfacial connectors for stackable amphiphilic gels. <i>Polymer</i> , 2016 , 101, 406-414	3.9	13
145	Atom transfer versus catalyst transfer: Deviations from ideal Poisson behavior in controlled polymerizations. <i>Polymer</i> , 2015 , 72, 226-237	3.9	7
144	Evolution of high-temperature molecular relaxations in poly(2-(2-methoxyethoxy)ethyl methacrylate) upon network formation. <i>Colloid and Polymer Science</i> , 2015 , 293, 1357-1367	2.4	9
143	Effects of Delocalized Charge Carriers in Organic Solar Cells: Predicting Nanoscale Device Performance from Morphology. <i>Advanced Functional Materials</i> , 2015 , 25, 1996-2003	15.6	21
142	Ductility, toughness and strain recovery in self-healing dual cross-linked nanoparticle networks studied by computer simulations. <i>Progress in Polymer Science</i> , 2015 , 40, 121-137	29.6	28
141	Stille Catalyst-Transfer Polycondensation Using Pd-PEPPSI-IPr for High-Molecular-Weight Regioregular Poly(3-hexylthiophene). <i>Macromolecular Rapid Communications</i> , 2015 , 36, 840-4	4.8	48
140	Copolymer-templated nitrogen-enriched nanocarbons as a low charge-transfer resistance and highly stable alternative to platinum cathodes in dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4413-4419	13	36

139	Modeling polymer grafted nanoparticle networks reinforced by high-strength chains. <i>Soft Matter</i> , 2014 , 10, 1374-83	3.6	23
138	Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3957-60	16.4	87
137	Cooperative, Reversible Self-Assembly of Covalently Pre-Linked Proteins into Giant Fibrous Structures. <i>Angewandte Chemie</i> , 2014 , 126, 8188-8193	3.6	1
136	Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction. <i>Chemical Science</i> , 2014 , 5, 3315	9.4	37
135	Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 1469-1475	2.6	22
134	Templated Synthesis of Nitrogen-Enriched Nanoporous Carbon Materials from Porogenic Organic Precursors Prepared by ATRP. <i>Angewandte Chemie</i> , 2014 , 126, 4038-4041	3.6	18
133	Cooperative, reversible self-assembly of covalently pre-linked proteins into giant fibrous structures. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8050-5	16.4	29
132	Preparation of porous nanocarbons with tunable morphology and pore size from copolymer templated precursors. <i>Materials Horizons</i> , 2014 , 1, 121-124	14.4	27
131	Strain recovery and self-healing in dual cross-linked nanoparticle networks. <i>Polymer Chemistry</i> , 2013 , 4, 4927	4.9	30
130	Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. <i>Soft Matter</i> , 2013 , 9, 109-121	3.6	44
129	Monte Carlo Simulations of Charge Transport in 2D Organic Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 36-42	6.4	18
128	Self Encapsulated Poly(3-hexylthiophene)-poly(fluorinated alkyl methacrylate) Rod-Coil Block Copolymers with High Field Effect Mobilities on Bare SiO2. <i>Advanced Functional Materials</i> , 2012 , 22, 10	24 ⁵ 183	2 ³⁷
127	Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. <i>Chemical Communications</i> , 2012 , 48, 11516-8	5.8	98
126	Self-Healing Polymer Films Based on ThiolDisulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. <i>Macromolecules</i> , 2012 , 45, 142-149	5.5	360
125	Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14846-57	16.4	327
124	Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes. <i>ACS Nano</i> , 2012 , 6, 6208-14	16.7	80
123	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1078-1090	2.6	66
122	Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> 2012 30, 061407	2.9	7

121	Novel Nanoporous Carbons from Well-Defined Poly(styrene-co-acrylonitrile)-Grafted Silica Nanoparticles. <i>Chemistry of Materials</i> , 2011 , 23, 2024-2026	9.6	44
120	Nanoporous Polystyrene and Carbon Materials with CoreBhell Nanosphere-Interconnected Network Structure. <i>Macromolecules</i> , 2011 , 44, 5846-5849	5.5	75
119	Thermoresponsive hydrogel scaffolds with tailored hydrophilic pores. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 128-36	4.5	31
118	The modulating effect of mechanical changes in lipid bilayers caused by apoE-containing lipoproteins on Afinduced membrane disruption. <i>ACS Chemical Neuroscience</i> , 2011 , 2, 588-599	5.7	24
117	Comparison of Thermoresponsive Deswelling Kinetics of Poly(oligo(ethylene oxide) methacrylate)-Based Thermoresponsive Hydrogels Prepared by Ciraft-from ATRP. <i>Macromolecules</i> , 2011 , 44, 2261-2268	5.5	57
116	Effect of self-assembled monolayers on charge injection and transport in poly(3-hexylthiophene)-based field-effect transistors at different channel length scales. <i>ACS Applied Materials & Different (Company)</i> (2011), 3, 2973-8	9.5	31
115	Robust control of microdomain orientation in thin films of block copolymers by zone casting. Journal of the American Chemical Society, 2011 , 133, 11802-9	16.4	68
114	Modeling the nanoscratching of self-healing materials. <i>Journal of Chemical Physics</i> , 2011 , 134, 084901	3.9	10
113	Synthesis, Characterization, and Properties of Starlike Poly(n-butyl acrylate)-b-poly(methyl methacrylate) Block Copolymers. <i>Macromolecules</i> , 2010 , 43, 1227-1235	5.5	65
112	Highly Stable Semiconducting Polymers Based on Thiazolothiazole. <i>Chemistry of Materials</i> , 2010 , 22, 4191-4196	9.6	104
111	Thermocurable hyperbranched polystyrenes for ultrathin polymer dielectrics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 2475-80	9.5	8
110	Comparison of the Thermoresponsive Deswelling Kinetics of Poly(2-(2-methoxyethoxy)ethyl methacrylate) Hydrogels Prepared by ATRP and FRP. <i>Macromolecules</i> , 2010 , 43, 4791-4797	5.5	75
109	Ferrocene functional polymer brushes on indium tin oxide via surface-initiated atom transfer radical polymerization. <i>Langmuir</i> , 2010 , 26, 2083-92	4	64
108	Well-defined, high molecular weight poly(3-alkylthiophene)s in thin-film transistors: side chain invariance in field-effect mobility. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3195		45
107	Planarization of Polymeric Field-Effect Transistors: Improvement of Nanomorphology and Enhancement of Electrical Performance. <i>Advanced Functional Materials</i> , 2010 , 20, 2216-2221	15.6	23
106	Transistor paint: high mobilities in small bandgap polymer semiconductor based on the strong acceptor, diketopyrrolopyrrole and strong donor, dithienopyrrole. <i>Advanced Materials</i> , 2010 , 22, 4617-2	2 1 ⁴	142
105	Star-like poly (n-butyl acrylate)-b-poly (Emethylene-Ebutyrolactone) block copolymers for high temperature thermoplastic elastomers applications. <i>Polymer</i> , 2010 , 51, 4806-4813	3.9	54
104	Transistor Paint: Environmentally Stable N-alkyldithienopyrrole and Bithiazole-Based Copolymer Thin-Film Transistors Show Reproducible High Mobilities without Annealing. <i>Advanced Functional Materials</i> , 2009 , 19, 3427-3434	15.6	79

(2007-2009)

103	Methacryloyl and/or Hydroxyl End-Functional Star Polymers Synthesized by ATRP Using the Arm-First Method. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 421-430	2.6	18
102	Regioregular Poly(3-hexylthiophene) in a Novel Conducting Amphiphilic Block Copolymer. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 11-6	4.8	76
101	Dry Spinning Based Spinneret Based Tunable Engineered Parameters (STEP) Technique for Controlled and Aligned Deposition of Polymeric Nanofibers. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1406-12	4.8	64
100	Polymer micelles from tadpole-shaped amphiphilic block-graft copolymers prepared by Grafting-through ATRP. <i>Polymer Science - Series A</i> , 2009 , 51, 1210-1217	1.2	9
99	One-Pot Synthesis of Hairy Nanoparticles by Emulsion ATRP. <i>Macromolecules</i> , 2009 , 42, 1597-1603	5.5	94
98	Investigation of electrical properties of nanostructured carbon films derived from block copolymers. <i>Synthetic Metals</i> , 2009 , 159, 177-181	3.6	7
97	Dangling chain elastomers as repeatable fibrillar adhesives. <i>ACS Applied Materials & Damp; Interfaces</i> , 2009 , 1, 2277-87	9.5	32
96	High-lamellar ordering and amorphous-like pi-network in short-chain thiazolothiazole-thiophene copolymers lead to high mobilities. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2521-9	16.4	248
95	Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2',3'-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13167-76	16.4	224
94	Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity. <i>Langmuir</i> , 2008 , 24, 6785-95	4	186
93	Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas. <i>Macromolecules</i> , 2008 , 41, 8584-8591	5.5	121
92	Synthesis, Assembly, and Functionalization of Polymer-Coated Ferromagnetic Nanoparticles. <i>ACS Symposium Series</i> , 2008 , 272-285	0.4	3
91	Dependence of field-effect mobility and contact resistance on nanostructure in regioregular poly(3-hexylthiophene) thin film transistors. <i>Applied Physics Letters</i> , 2008 , 92, 263303	3.4	22
90	Nanoporous Carbon Films from HairyIPolyacrylonitrile-Grafted Colloidal Silica Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 1516-1522	24	73
89	Synthesis and Morphology of Molecular Brushes with Polyacrylonitrile Block Copolymer Side Chains and Their Conversion into Nanostructured Carbons. <i>Macromolecules</i> , 2007 , 40, 6199-6205	5.5	73
88	Magnetic assembly and pyrolysis of functional ferromagnetic colloids into one-dimensional carbon nanostructures. <i>Journal of the American Chemical Society</i> , 2007 , 129, 8694-5	16.4	67
87	Synthesis and in situ atomic force microscopy characterization of temperature-responsive hydrogels based on poly(2-(dimethylamino)ethyl methacrylate) prepared by atom transfer radical polymerization. <i>Langmuir</i> , 2007 , 23, 241-9	4	42
86	Conducting Regioregular Polythiophene Block Copolymer Nanofibrils Synthesized by Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP). <i>Macromolecules</i> , 2007 , 40, 4733-4735	5.5	203

85	Light-induced reversible formation of polymeric micelles. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2453-7	16.4	348
84	Novel Thiophene-Thiazolothiazole Copolymers for Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2007 , 19, 4160-4165	24	266
83	A Novel Route for the Preparation of Discrete Nanostructured Carbons from Block Copolymers with Polystyrene Segments. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2312-2320	2.6	21
82	Macromol. Chem. Phys. 21/2007. Macromolecular Chemistry and Physics, 2007, 208, 2380-2380	2.6	
81	Conducting Block Copolymers of Regioregular Poly(3-hexylthiophene) and Poly(methacrylates): Electronic Materials with Variable Conductivities and Degrees of Interfibrillar Order. Macromolecular Rapid Communications, 2007, 28, 1816-1824	4.8	91
80	Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. <i>Microporous and Mesoporous Materials</i> , 2007 , 102, 178-187	5.3	80
79	Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by atom transfer radical polymerization. <i>Polymer</i> , 2007 , 48, 7279-7290	3.9	24
78	"Hairy" single-walled carbon nanotubes prepared by atom transfer radical polymerization. <i>Small</i> , 2007 , 3, 1803-10	11	56
77	Inkjet printed chemical sensor array based on polythiophene conductive polymers. <i>Sensors and Actuators B: Chemical</i> , 2007 , 123, 651-660	8.5	148
76	Templating Conducting Polymers via Self-Assembly of Block Copolymers and Supramolecular Recognition. <i>Macromolecules</i> , 2007 , 40, 7745-7747	5.5	38
75	Synthesis and Characterization of Styrene/Butyl Acrylate Linear and Star Block Copolymers via Atom Transfer Radical Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 801-811	2.6	33
74	Synthesis, mobility, and conductivity of well-defined regioregular poly(3-hexylthiophene) and diblock copolymers of regioregular poly(3-hexylthiophene) 2006 , 6336, 159		1
73	Imaging stability and average tip-sample force in tapping mode atomic force microscopy. <i>Journal of Applied Physics</i> , 2006 , 99, 064903	2.5	28
72	Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 4813-8	11.5	117
71	Volatile organic compound detection using nanostructured copolymers. <i>Nano Letters</i> , 2006 , 6, 1598-60	211.5	174
70	Conducting Block Copolymer Nanowires Containing Regioregular Poly(3-Hexylthiophene) and Polystyrene. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2006 , 43, 1991-2000	2.2	69
69	Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3480-1	16.4	421
68	Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6562-3	16.4	200

(2004-2006)

67	Well-Defined Poly(ethylene oxide) P olyacrylonitrile Diblock Copolymers as Templates for Mesoporous Silicas and Precursors for Mesoporous Carbons. <i>Chemistry of Materials</i> , 2006 , 18, 1417-142	.4 ^{9.6}	54
66	Water-Dispersible Carbon Black Nanocomposites Prepared by Surface-Initiated Atom Transfer Radical Polymerization in Protic Media. <i>Macromolecules</i> , 2006 , 39, 548-556	5.5	71
65	Atomic Force Microscopy 2006 , 315-334		1
64	Advances in Nanostructured Carbons from Block Copolymers Prepared by Controlled Radical Polymerization Techniques. <i>ACS Symposium Series</i> , 2006 , 295-310	0.4	6
63	Controlling Polymer Chain Topology and Architecture by ATRP from Flat Surfaces. <i>ACS Symposium Series</i> , 2005 , 28-42	0.4	8
62	Synthesis and Direct Visualization of Block Copolymers Composed of Different Macromolecular Architectures. <i>Macromolecules</i> , 2005 , 38, 2674-2685	5.5	72
61	Long-range ordered thin films of block copolymers prepared by zone-casting and their thermal conversion into ordered nanostructured carbon. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6918-9	16.4	197
60	Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9216-25	3.4	186
59	Monitoring surface thermal transitions of ABA triblock copolymers with crystalline segments using phase contrast tapping mode atomic force microscopy. <i>Langmuir</i> , 2005 , 21, 1143-8	4	14
58	Self-assembly of pODMA-b-ptBA-b-pODMA triblock copolymers in bulk and on surfaces. A quantitative SAXS/AFM comparison. <i>Langmuir</i> , 2005 , 21, 9721-7	4	17
57	Polymer Brushes by Atom Transfer Radical Polymerization 2005 , 51-68		5
56	Regioregular polythiophene nanowires and sensors 2005,		3
55	Insights into fluid tapping-mode atomic force microscopy provided by numerical simulations. <i>Applied Physics Letters</i> , 2005 , 87, 163120	3.4	33
54	ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. <i>Journal of Biological Chemistry</i> , 2004 , 279, 40987-93	5.4	304
53	Well-defined carbon nanoparticles prepared from water-soluble shell cross-linked micelles that contain polyacrylonitrile cores. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2783-7	16.4	97
52	Well-Defined Carbon Nanoparticles Prepared from Water-Soluble Shell Cross-linked Micelles that Contain Polyacrylonitrile Cores. <i>Angewandte Chemie</i> , 2004 , 116, 2843-2847	3.6	18
51	Synthesis and Surface Attachment of ABC Triblock Copolymers Containing Glassy and Rubbery Segments. <i>Macromolecular Chemistry and Physics</i> , 2004 , 205, 411-417	2.6	26
50	In situ AFM studies of astrocyte-secreted apolipoprotein E- and J-containing lipoproteins. <i>Journal of Colloid and Interface Science</i> , 2004 , 278, 96-106	9.3	30

49	Synthesis and Characterization of New Liquid-Crystalline Block Copolymers with p-Cyanoazobenzene Moieties and Poly(n-butyl acrylate) Segments Using Atom-Transfer Radical Polymerization. <i>Macromolecules</i> , 2004 , 37, 9355-9365	5.5	57
48	Tapping, pulling, probing: atomic force microscopy in drug discovery. <i>Drug Discovery Today: Technologies</i> , 2004 , 1, 163-9	7.1	4
47	Effect of different anti-Abeta antibodies on Abeta fibrillogenesis as assessed by atomic force microscopy. <i>Journal of Molecular Biology</i> , 2004 , 335, 997-1006	6.5	88
46	Complex nanostructured materials from segmented copolymers prepared by ATRP. <i>European Physical Journal E</i> , 2003 , 10, 5-16	1.5	56
45	Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 1043-1059	4.8	622
44	Nanodroplets of polyisoprene fluid contained within poly(acrylic acid-co-acrylamide) shells. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 1659-1668	2.5	35
43	Synthesis and Characterization of Organic/Inorganic Hybrid Nanoparticles: Kinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Hybrid Nanoparticle Ultrathin Films. <i>Macromolecules</i> , 2003 , 36, 5094-5104	5.5	297
42	Grafting Poly(n-butyl acrylate) from a Functionalized Carbon Black Surface by Atom Transfer Radical Polymerization <i>Langmuir</i> , 2003 , 19, 6342-6345	4	105
41	Synthesis of Block, Statistical, and Gradient Copolymers from Octadecyl (Meth)acrylates Using Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2003 , 36, 8969-8977	5.5	128
40	Preparation of Polyacrylonitrile-block-poly(n-butyl acrylate) Copolymers Using Atom Transfer Radical Polymerization and Nitroxide Mediated Polymerization Processes. <i>Macromolecules</i> , 2003 , 36, 1465-1473	5.5	126
39	Synthesis and Characterization of Organic/Inorganic Hybrid Nanoparticles: IKinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Hybrid Nanoparticle Ultrathin Films. Volume 36, Number 14, July 15, 2003, pp 50948104 <i>Macromolecules</i> , 2003 , 36, 6952-69	5.5 9 52	7
38	RAFT Polymerization of Acrylonitrile and Preparation of Block Copolymers Using 2-Cyanoethyl Dithiobenzoate as the Transfer Agent. <i>Macromolecules</i> , 2003 , 36, 8587-8589	5.5	79
37	Thermal shaping of shell-crosslinked (SCK) nanoparticles, facilitated by nanoconfinement of fluid-like cores. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2785-2795		47
36	Tuning the Electrical Conductivity and Self-Assembly of Regioregular Polythiophene by Block Copolymerization: Nanowire Morphologies in New Di- and Triblock Copolymers. <i>Angewandte Chemie</i> , 2002 , 114, 339-342	3.6	30
35	Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: nanowire morphologies in new di- and triblock copolymers. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 329-32	16.4	362
34	Polyolefin graft copolymers via living polymerization techniques: Preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 2736-2749	2.5	93
33	Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: Effect of constraint on the glass-transition temperature of spherical polymer brushes. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2002 , 40, 2667-2676	2.6	138
32	Chemically induced supramolecular reorganization of triblock copolymer assemblies: trapping of intermediate states via a shell-crosslinking methodology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 5058-63	11.5	80

(1996-2002)

31	Nanostructured carbon arrays from block copolymers of polyacrylonitrile. <i>Journal of the American Chemical Society</i> , 2002 , 124, 10632-3	16.4	224
30	Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy. <i>Physical Review Letters</i> , 2001 , 86, 87-90	7.4	106
29	Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9445-6	16.4	159
28	Environmentally-Responsive, Entirely Hydrophilic, Shell Cross-linked (SCK) Nanoparticles. <i>Nano Letters</i> , 2001 , 1, 651-655	11.5	68
27	Two-dimensional, shell-cross-linked nanoparticle arrays. <i>Journal of the American Chemical Society</i> , 2001 , 123, 4627-8	16.4	86
26	Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. <i>Physical Review Letters</i> , 2000 , 85, 1456-9	7.4	181
25	Packaging of DNA by shell crosslinked nanoparticles. <i>Nucleic Acids Research</i> , 1999 , 27, 2966-71	20.1	52
24	In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 3688-93	11.5	377
23	The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. <i>Polymer</i> , 1999 , 40, 2367-2380	3.9	105
22	Shell cross-linked polymer micelles: stabilized assemblies with great versatility and potential. <i>Colloids and Surfaces B: Biointerfaces</i> , 1999 , 16, 45-54	6	71
21	Nanocages Derived from Shell Cross-Linked Micelle Templates. <i>Journal of the American Chemical Society</i> , 1999 , 121, 3805-3806	16.4	566
20	Synthesis, Characterization, and Derivatization of Hyperbranched Polyfluorinated Polymers. <i>Macromolecules</i> , 1998 , 31, 776-786	5.5	89
19	Hydrogel-Coated Glassy Nanospheres: A Novel Method for the Synthesis of Shell Cross-Linked Knedels. <i>Journal of the American Chemical Society</i> , 1997 , 119, 11653-11659	16.4	230
18	Shell Cross-Linked Knedels: A Synthetic Study of the Factors Affecting the Dimensions and Properties of Amphiphilic Core-Shell Nanospheres. <i>Journal of the American Chemical Society</i> , 1997 , 119, 6656-6665	16.4	338
17	Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. <i>EMBO Journal</i> , 1997 , 16, 5098-112	13	242
16	Water-Soluble Knedel-like Structures: The Preparation of Shell-Cross-Linked Small Particles. Journal of the American Chemical Society, 1996 , 118, 7239-7240	16.4	490
15	Phase structure and viscoelastic properties. <i>Journal of Thermal Analysis</i> , 1996 , 46, 1061-1079		5
14	Characterization of two forms of cadmium phosphide by magic-angle spinning 31P NMR. <i>Solid State Nuclear Magnetic Resonance</i> , 1996 , 6, 39-46	3.1	20

13	Synthesis and characterization of C60{lcub;CCl4}rcub;10. Solid State Communications, 1995, 96, 597-60	0 1.6	12
12	Interchain Packing in Bisphenol A Polycarbonate. <i>Macromolecules</i> , 1995 , 28, 2476-2482	5.5	21
11	The origin of the double peak at 260 K in calorimetric measurements on solid C60. <i>Chemical Physics Letters</i> , 1995 , 239, 387-392	2.5	13
10	Porous Silicon Luminescence Study by Imaging Methods: Relationship to Pore Dimensions. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 332, 201		
9	Atomic Force Microscopy Studies of Ultra-Thin Films of Cadmium Phosphide Nanoclusters on Mica 1994 , 271-279		
8	Local packing in glassy polycarbonate by carbon-deuterium REDOR NMR. <i>Macromolecules</i> , 1993 , 26, 17	'2 9. ∮7	3340
7	High orientation of toughened chalk-filled isotactic polypropylene: Preparation and properties. <i>Polymer Engineering and Science</i> , 1992 , 32, 1217-1227	2.3	10
6	Crystallization of linear polyethylene from melt in isothermal compression. <i>Journal of Applied Polymer Science</i> , 1992 , 44, 95-105	2.9	12
5	Influence of chalk and its surface treatment on crystallization of filled polypropylene. <i>Journal of Applied Polymer Science</i> , 1986 , 32, 2919-2934	2.9	72
4	The role of the liquid interface agent in mechanical properties improvement of modified chalk filled polyolefins. <i>Colloid and Polymer Science</i> , 1982 , 260, 652-662	2.4	14
3	Volatile organic compound discrimination using nanostructured polythiophene sensors		1
2	Nanostructured Carbons from Block Copolymers257-274		3

ATRP: A Versatile Tool toward Uniformly Crosslinked Hydrogels with Controlled Architecture and Multifunctionality169-