## Ian Forbes

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4092461/publications.pdf

Version: 2024-02-01

| 51       | 2,935          | 19           | 46             |
|----------|----------------|--------------|----------------|
| papers   | citations      | h-index      | g-index        |
| 51       | 51             | 51           | 3997           |
| all docs | docs citations | times ranked | citing authors |

| #  | Article                                                                                                                                                                                               | IF           | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1  | Inorganic photovoltaic cells. Materials Today, 2007, 10, 20-27.                                                                                                                                       | 14.2         | 1,135     |
| 2  | New routes to sustainable photovoltaics: evaluation of Cu <sub>2</sub> ZnSnS <sub>4</sub> as an alternative absorber material. Physica Status Solidi (B): Basic Research, 2008, 245, 1772-1778.       | 1.5          | 322       |
| 3  | Cu <sub>2</sub> ZnSnSe <sub>4</sub> thin film solar cells produced by selenisation of magnetron sputtered precursors. Progress in Photovoltaics: Research and Applications, 2009, 17, 315-319.        | 8.1          | 276       |
| 4  | Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials, 2005, 51, 1-42.                    | 4.0          | 229       |
| 5  | Thermally evaporated thin films of SnS for application in solar cell devices. Thin Solid Films, 2009, 517, 4702-4705.                                                                                 | 1.8          | 125       |
| 6  | Thin films of tin sulphide for use in thin film solar cell devices. Thin Solid Films, 2009, 517, 2485-2488.                                                                                           | 1.8          | 83        |
| 7  | <i>V</i> <sub>oc</sub> Boosting and Grain Growth Enhancing Ge-Doping Strategy for Cu <sub>2</sub> ZnSnSe <sub>4</sub> Photovoltaic Absorbers. Journal of Physical Chemistry C, 2016, 120, 9661-9670.  | 3.1          | 69        |
| 8  | Annealing studies and electrical properties of SnS-based solar cells. Thin Solid Films, 2011, 519, 7425-7428.                                                                                         | 1.8          | 57        |
| 9  | Electrical, morphological and structural properties of RF magnetron sputtered Mo thin films for application in thin film photovoltaic solar cells. Journal of Materials Science, 2011, 46, 4913-4921. | 3.7          | 52        |
| 10 | Revealing the beneficial effects of Ge doping on Cu <sub>2</sub> ZnSnSe <sub>4</sub> thin film solar cells. Journal of Materials Chemistry A, 2018, 6, 11759-11772.                                   | 10.3         | 46        |
| 11 | Single Phase, Large Grain, p-Conductivity-type SnS Layers Produced using the Thermal Evaporation Method. Energy Procedia, 2012, 15, 354-360.                                                          | 1.8          | 36        |
| 12 | Electronic and structural characterisation of Cu3BiS3 thin films for the absorber layer of sustainable photovoltaics. Thin Solid Films, 2014, 562, 195-199.                                           | 1.8          | 36        |
| 13 | Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn. Materials, 2018, 11, 536.                                                                                      | 2.9          | 35        |
| 14 | Chalcogenisation of Cu–Sb metallic precursors into Cu3Sb(SexS1⬒x)3. Solar Energy Materials and Solar Cells, 2013, 113, 186-194.                                                                       | 6.2          | 34        |
| 15 | Effect of composition gradient in Cu(In,Al)Se2 solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 922-925.                                                                                | 6.2          | 31        |
| 16 | The potential of thermophotovoltaic heat recovery for the UK industry. International Journal of Ambient Energy, 2004, 25, 19-25.                                                                      | 2.5          | 27        |
| 17 | Simplified levelised cost of the domestic photovoltaic energy in the UK: the importance of the feedâ€in tariff scheme. IET Renewable Power Generation, 2014, 8, 451-458.                              | 3.1          | 27        |
| 18 | Earth abundant thin film solar cells from co-evaporated Cu2SnS3 absorber layers. Journal of Alloys and Compounds, 2016, 689, 182-186.                                                                 | 5 <b>.</b> 5 | 24        |

| #  | Article                                                                                                                                                                                                     | IF           | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 19 | Growth of high-quality CulnSe2 films by selenising sputtered Cu–In bilayers using a closed graphite box. Materials Letters, 1998, 37, 57-62.                                                                | 2.6          | 20        |
| 20 | Radiative recombination in Cu <sub>2</sub> ZnSnSe <sub>4</sub> thin films with Cu deficiency and Zn excess. Journal Physics D: Applied Physics, 2015, 48, 475109.                                           | 2.8          | 20        |
| 21 | A combined model for PV system lifetime energy prediction and annual energy assessment. Solar Energy, 2019, 183, 738-744.                                                                                   | 6.1          | 20        |
| 22 | The influence of precursor Cu content and two-stage processing conditions on the microstructure of Cu 2 ZnSnSe 4. Thin Solid Films, 2015, 582, 220-223.                                                     | 1.8          | 19        |
| 23 | A SOLAR CELL STACKED SLOT-LOADED SUSPENDED MICROSTRIP PATCH ANTENNA WITH MULTIBAND RESONANCE CHARACTERISTICS FOR WLAN AND WIMAX SYSTEMS. Progress in Electromagnetics Research, 2013, 142, 321-332.         | 4.4          | 18        |
| 24 | Suppression of thermal conductivity without impeding electron mobility in n-type XNiSn half-Heusler thermoelectrics. Journal of Materials Chemistry A, 2019, 7, 27124-27134.                                | 10.3         | 18        |
| 25 | Rocking disc electro-deposition of Culn alloys, selenisation, and pinhole effect minimisation in CISe solar absorber layers. Electrochimica Acta, 2012, 79, 141-147.                                        | 5 <b>.</b> 2 | 14        |
| 26 | Optical spectroscopy studies of Cu 2 ZnSnSe 4 thin films. Thin Solid Films, 2015, 582, 154-157.                                                                                                             | 1.8          | 14        |
| 27 | Crystallographic properties and elemental migration in two-stage prepared Culn1â^'xAlxSe2 thin films for photovoltaic applications. Journal of Alloys and Compounds, 2013, 566, 180-186.                    | 5.5          | 12        |
| 28 | A meshed multiband solar patch array antenna. , 2012, , .                                                                                                                                                   |              | 10        |
| 29 | Production of high quality CulnSe2 thin films from magnetron sputtered ultra-thin Cu-In multilayers.<br>Journal of Materials Science Letters, 1996, 15, 478-481.                                            | 0.5          | 9         |
| 30 | Deposition and Characterization of Copper Chalcopyrite Based Solar Cells using Electrochemical Techniques. ECS Transactions, 2007, 6, 535-546.                                                              | 0.5          | 9         |
| 31 | Shortâ€term performance variations of different photovoltaic system technologies under the humid subtropical climate of Kanpur in India. IET Renewable Power Generation, 2015, 9, 438-445.                  | 3.1          | 9         |
| 32 | CulnSe2 precursor films electro-deposited directly onto MoSe2. Journal of Electroanalytical Chemistry, 2010, 645, 16-21.                                                                                    | 3.8          | 8         |
| 33 | Metal-organic chemical vapor deposition of ultra-thin photovoltaic devices using a pyrite based p–i–n structure. Thin Solid Films, 2011, 519, 7360-7363.                                                    | 1.8          | 8         |
| 34 | Evolution of phases in two-stage vacuum processed thin film Cu2ZnSnSe4 absorber layers. Materials Research Innovations, 2014, 18, 515-518.                                                                  | 2.3          | 8         |
| 35 | Investigation of the Structural, Optical and Electrical Properties of Cu3BiS3 Semiconducting Thin Films. Energy Procedia, 2014, 60, 166-172.                                                                | 1.8          | 8         |
| 36 | Environmental assessment of vacuum and non-vacuum techniques for the fabrication of Cu <sub>2</sub> ZnSnS <sub>4</sub> thin film photovoltaic cells. Japanese Journal of Applied Physics, 2018, 57, 08RC14. | 1.5          | 8         |

| #  | Article                                                                                                                                                                                                       | IF  | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Title is missing!. Journal of Materials Science: Materials in Electronics, 2003, 14, 567-571.                                                                                                                 | 2.2 | 7         |
| 38 | Design of a highly efficient wideband suspended solar array antenna. , 2012, , .                                                                                                                              |     | 7         |
| 39 | A solar parabolic reflector antenna design for digital satellite communication systems. , 2012, , .                                                                                                           |     | 7         |
| 40 | A triband short-circuited suspended solar patch antenna. , 2012, , .                                                                                                                                          |     | 6         |
| 41 | Effects of Ar+ etching of Cu2ZnSnSe4 thin films: An x-ray photoelectron spectroscopy and photoluminescence study. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, . | 1.2 | 6         |
| 42 | Rocking disc electro-deposition of copper films on Mo/MoSe2 substrates. Thin Solid Films, 2011, 519, 7458-7463.                                                                                               | 1.8 | 5         |
| 43 | Study of the Al-grading effect in the crystallisation of chalcopyrite CuIn1â^'xAlxSe2 thin films. Materials Chemistry and Physics, 2013, 140, 236-242.                                                        | 4.0 | 5         |
| 44 | Effects of irradiation of ZnO/CdS/Cu2ZnSnSe4/Mo/glass solar cells by 10ÂMeV electrons on photoluminescence spectra. Materials Science in Semiconductor Processing, 2021, 121, 105301.                         | 4.0 | 4         |
| 45 | Title is missing!. Journal of Materials Science Letters, 2001, 20, 921-923.                                                                                                                                   | 0.5 | 2         |
| 46 | Heat Transfer Modelling of Glass Media within TPV Systems. AIP Conference Proceedings, 2004, , .                                                                                                              | 0.4 | 2         |
| 47 | Characterisation of thin film chalcogenide PV materials using MeV ion beam analysis. , 2009, , .                                                                                                              |     | 2         |
| 48 | A PL and PLE Study of High Cu Content Cu2ZnSnSe4 Films on Mo/Glass and Solar Cells. Physics of the Solid State, 2019, 61, 908-917.                                                                            | 0.6 | 2         |
| 49 | Diamond-doped silica aerogel for solar geoengineering. Diamond and Related Materials, 2021, 117, 108474.                                                                                                      | 3.9 | 2         |
| 50 | New Chalcogenide Materials forÂThin Film Solar Cells. RSC Energy and Environment Series, 2014, , 160-208.                                                                                                     | 0.5 | 1         |
| 51 | Effects of selenisation temperature on photoluminescence and photoluminescence excitation spectra of ZnO/CdS/Cu2ZnSnSe4/Mo/glass. Thin Solid Films, 2019, 672, 146-151.                                       | 1.8 | 1         |