Brian M Barth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4091551/publications.pdf

Version: 2024-02-01

304743 434195 2,411 38 22 31 citations h-index g-index papers 38 38 38 4334 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Ceramide: improving Bcl-2 inhibitor therapy. Blood, 2022, 139, 3676-3678.	1.4	O
2	Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2. NeuroMolecular Medicine, 2021, 23, 25-46.	3.4	10
3	Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Scientific Reports, 2020, 10, 2003.	3.3	117
4	The Role of the Microbiome in Cancer and the Development of Cancer Therapeutics., 2020, 2,.		0
5	Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia. Blood Advances, 2019, 3, 2598-2603.	5.2	24
6	Therapeutic effect of <scp>Northern Labrador</scp> tea extracts for acute myeloid leukemia. Phytotherapy Research, 2018, 32, 1636-1641.	5.8	7
7	Epigenetics and Sphingolipid Metabolism in Health and Disease. International Journal of Biopharmaceutical Sciences, 2018, 1 , .	0.5	4
8	Therapeutic Effect of Blueberry Extracts for Acute Myeloid Leukemia., 2018, 1, .		5
9	Combinatorial Efficacy of Quercitin and Nanoliposomal Ceramide for Acute Myeloid Leukemia. , 2018, 1, .		3
10	Ceramide-tamoxifen regimen targets bioenergetic elements in acute myelogenous leukemia. Journal of Lipid Research, 2016, 57, 1231-1242.	4.2	29
11	Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget, 2016, 7, 83208-83222.	1.8	73
12	Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemiaâ€"Impact on enzyme activity and response to cytotoxics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 919-928.	2.4	24
13	Engraftment of Human Primary Acute Myeloid Leukemia Defined by Integrated Genetic Profiling in NOD/SCID/IL $2r\hat{l}^3$ null Mice for Preclinical Ceramide-Based Therapeutic Evaluation. Journal of Leukemia (Los Angeles, Calif), 2014, 02, .	0.1	3
14	Maritoclax induces apoptosis in acute myeloid leukemia cells with elevated Mcl-1 expression. Cancer Biology and Therapy, 2014, 15, 1077-1086.	3.4	33
15	Extracts of Devil's Club (<i>Oplopanax horridus</i>) Exert Therapeutic Efficacy in Experimental Models of Acute Myeloid Leukemia. Phytotherapy Research, 2014, 28, 1308-1314.	5.8	9
16	Cholecystokinin Mediates Progression and Metastasis of Pancreatic Cancer Associated with Dietary Fat. Digestive Diseases and Sciences, 2014, 59, 1180-1191.	2.3	30
17	Screen of Small Molecule ONC201/TIC10 Identifies Single Agent Activity and Combinatorial Efficacy with Bortezomib, Rituximab or Dexamethasone in Killing of Acute Lymphoblastic Leukemia Cells. Blood, 2014, 124, 5233-5233.	1.4	0
18	Caspase-Dependent Anti-Tumor Effects of ONC201/TIC10 on Acute Myeloid Leukemia (AML) and Multiple Myeloma (MM). Blood, 2014, 124, 5224-5224.	1.4	O

#	Article	IF	Citations
19	Small Molecule ONC201/TIC10 Induces Caspase-Dependent Apoptosis in Acute Lymphoblastic Leukemia Cells Via Modulation of Bcl-2 and IAP Family Proteins. Blood, 2014, 124, 5237-5237.	1.4	1
20	PhotoImmunoNanoTherapy Reveals an Anticancer Role for Sphingosine Kinase 2 and Dihydrosphingosine-1-Phosphate. ACS Nano, 2013, 7, 2132-2144.	14.6	28
21	Ceramide 1-Phosphate Mediates Endothelial Cell Invasion via the Annexin a2-p11 Heterotetrameric Protein Complex. Journal of Biological Chemistry, 2013, 288, 19726-19738.	3.4	40
22	The Therapeutic Potential of Nanoscale Sphingolipid Technologies. Handbook of Experimental Pharmacology, 2013, , 197-210.	1.8	10
23	Gaucher's Disease and Cancer: A Sphingolipid Perspective. Critical Reviews in Oncogenesis, 2013, 18, 221-234.	0.4	25
24	Ceramide kinase regulates $TNF\hat{l}_{\pm}$ -stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cellular Signalling, 2012, 24, 1126-1133.	3.6	24
25	Neutral sphingomyelinase activation precedes NADPH oxidaseâ€dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factorâ€Î±. Journal of Neuroscience Research, 2012, 90, 229-242.	2.9	49
26	Enhancing Ceramide Cytotoxicity in Acute Myelogenous Leukemia. Blood, 2012, 120, 4905-4905.	1.4	0
27	Calcium phosphosilicate nanoparticles for imaging and photodynamic therapy of cancer. Discovery Medicine, 2012, 13, 275-85.	0.5	4
28	Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut, 2011, 60, 695-701.	12.1	80
29	Exogenous Ceramide-1-phosphate Reduces Lipopolysaccharide (LPS)-mediated Cytokine Expression. Journal of Biological Chemistry, 2011, 286, 44357-44366.	3.4	48
30	Targeted Indocyanine-Green-Loaded Calcium Phosphosilicate Nanoparticles for <i>In Vivo</i> Photodynamic Therapy of Leukemia. ACS Nano, 2011, 5, 5325-5337.	14.6	169
31	Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine, 2011, 17, 55-63.	30.7	751
32	Ceramide-Based Therapeutics for the Treatment of Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 911-919.	1.7	71
33	Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biology and Therapy, 2011, 12, 574-585.	3.4	64
34	Metabolism of short-chain ceramide by human cancer cellsâ€"Implications for therapeutic approaches. Biochemical Pharmacology, 2010, 80, 308-315.	4.4	54
35	Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance. Cancer Biology and Therapy, 2010, 10, 1126-1136.	3.4	32
36	Bioconjugation of Calcium Phosphosilicate Composite Nanoparticles for Selective Targeting of Human Breast and Pancreatic Cancers <i>In Vivo</i> . ACS Nano, 2010, 4, 1279-1287.	14.6	133

#	Article	IF	CITATIONS
37	Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase. Molecular and Cellular Neurosciences, 2009, 41, 274-285.	2.2	52
38	Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for <i>In Vivo</i> Imaging of Human Breast Cancer. ACS Nano, 2008, 2, 2075-2084.	14.6	405