Scott M Ferrenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4091482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patterns and Processes of Microbial Community Assembly. Microbiology and Molecular Biology Reviews, 2013, 77, 342-356.	6.6	1,325
2	Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME Journal, 2013, 7, 1102-1111.	9.8	354
3	Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12116-12121.	7.1	225
4	Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 2019, 233, 111401.	11.0	193
5	Mountain Pine Beetle Develops an Unprecedented Summer Generation in Response to Climate Warming. American Naturalist, 2012, 179, E163-E171.	2.1	156
6	Decreases in average bacterial community rRNA operon copy number during succession. ISME Journal, 2016, 10, 1147-1156.	9.8	146
7	The pervasive and multifaceted influence of biocrusts on water in the world's drylands. Global Change Biology, 2020, 26, 6003-6014.	9.5	129
8	Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia, 2014, 174, 1283-1292.	2.0	122
9	Towards a predictive framework for biocrust mediation of plant performance: A metaâ€analysis. Journal of Ecology, 2019, 107, 2789-2807.	4.0	92
10	Biological soil crusts: diminutive communities of potential global importance. Frontiers in Ecology and the Environment, 2017, 15, 160-167.	4.0	88
11	What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Reviews, 2022, 97, 1768-1785.	10.4	87
12	Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Scientific Reports, 2017, 7, 44188.	3.3	84
13	Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest. Forest Ecology and Management, 2006, 232, 36-45.	3.2	82
14	Traversing the Wasteland: A Framework for Assessing Ecological Threats to Drylands. BioScience, 2020, 70, 35-47.	4.9	74
15	Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant and Soil, 2018, 429, 77-90.	3.7	71
16	From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human Microbiome. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 137-155.	8.3	68
17	Smooth bark surfaces can defend trees against insect attack: resurrecting a â€ ⁻ slippery' hypothesis. Functional Ecology, 2014, 28, 837-845.	3.6	58
18	Safety Teams: An Approach To Engage Students in Laboratory Safety. Journal of Chemical Education, 2010, 87, 856-861.	2.3	56

SCOTT M FERRENBERG

#	Article	IF	CITATIONS
19	Fire decreases arthropod abundance but increases diversity: Early and late season prescribed fire effects in a Sierra Nevada mixed-conifer forest. Fire Ecology, 2006, 2, 79-102.	3.0	54
20	Climatic Sensitivity of Dryland Soil CO2 Fluxes Differs Dramatically with Biological Soil Crust Successional State. Ecosystems, 2019, 22, 15-32.	3.4	49
21	Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree Physiology, 2020, 40, 1313-1326.	3.1	43
22	Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire. Forests, 2017, 8, 347.	2.1	39
23	Banking on the past: seed banks as a reservoir for rare and native species in restored vernal pools. AoB PLANTS, 2013, 5, .	2.3	36
24	To grow or defend? Pine seedlings grow less but induce more defences when a key resource is limited. Tree Physiology, 2015, 35, 107-111.	3.1	31
25	Competition as a factor underlying the abundance of an uncommon phytophagous insect, the salt-marsh planthopper Delphacodes penedetecta. Ecological Entomology, 2003, 28, 58-66.	2.2	29
26	Resource allocation trade-offs in a mast-seeding conifer: Piñon pine prioritizes reproduction over defense. AoB PLANTS, 0, , .	2.3	28
27	Soil bacterial community structure remains stable over a 5-year chronosequence of insect-induced tree mortality. Frontiers in Microbiology, 2014, 5, 681.	3.5	26
28	Earlier plant growth helps compensate for reduced carbon fixation after 13Âyears of warming. Functional Ecology, 2019, 33, 2071-2080.	3.6	25
29	Resin monoterpene defenses decline within three widespread species of pine (<i>Pinus</i>) along a 1530â€m elevational gradient. Ecosphere, 2017, 8, e01975.	2.2	23
30	Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands. Biogeosciences, 2013, 10, 483-499.	3.3	19
31	Biocrust science and global change. New Phytologist, 2019, 223, 1047-1051.	7.3	19
32	Vertical movement of soluble carbon and nutrients from biocrusts to subsurface mineral soils. Geoderma, 2022, 405, 115495.	5.1	18
33	Lab and Field Warming Similarly Advance Germination Date and Limit Germination Rate for High and Low Elevation Provenances of Two Widespread Subalpine Conifers. Forests, 2017, 8, 433.	2.1	15
34	Ontogenetic consistency in oak defence syndromes. Journal of Ecology, 2020, 108, 1822-1834.	4.0	15
35	Landscape Features and Processes Influencing Forest Pest Dynamics. Current Landscape Ecology Reports, 2016, 1, 19-29.	2.2	14
36	Ground-Dwelling Arthropod Community Responses to Recent and Repeated Wildfires in Conifer Forests of Northern New Mexico, USA. Forests, 2019, 10, 667.	2.1	10

#	Article	IF	CITATIONS
37	Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance. PeerJ, 2016, 4, e2545.	2.0	10
38	Biocrust ecology: unifying micro―and macroâ€scales to confront global change. New Phytologist, 2017, 216, 643-646.	7.3	9
39	Incorporating Biogeochemistry into Dryland Restoration. BioScience, 2021, 71, 907-917.	4.9	8
40	A spatiotemporal framework reveals contrasting factors shape biocrust microbial and microfaunal communities in the Chihuahuan Desert. Geoderma, 2022, 405, 115409.	5.1	8
41	Dwarf Mistletoe Infection Interacts with Tree Growth Rate to Produce Opposing Direct and Indirect Effects on Resin Duct Defenses in Lodgepole Pine. Forests, 2020, 11, 222.	2.1	7
42	Quantifying the influence of different biocrust community states and their responses to warming temperatures on soil biogeochemistry in field and mesocosm studies. Geoderma, 2022, 409, 115633.	5.1	6
43	Field Studies Demonstrate Bivoltinism in the Mountain Pine Beetle. American Naturalist, 2014, 184, 797-801.	2.1	5
44	Modest Residual Effects of Short-Term Warming, Altered Hydration, and Biocrust Successional State on Dryland Soil Heterotrophic Carbon and Nitrogen Cycling. Frontiers in Ecology and Evolution,	2.2	5

2020, 8, .