Ze-Lin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4091127/publications.pdf Version: 2024-02-01

76-LIN 7HU

#	Article	IF	CITATIONS
1	Organic Lightâ€Emitting Diodes Based on Imidazole Semiconductors. Advanced Optical Materials, 2018, 6, 1800258.	3.6	110
2	Ambipolar D–A type bifunctional materials with hybridized local and charge-transfer excited state for high performance electroluminescence with EQE of 7.20% and CIEy â^¼ 0.06. Journal of Materials Chemistry C, 2017, 5, 5402-5410.	2.7	107
3	Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton. ACS Applied Materials & Interfaces, 2017, 9, 7331-7338.	4.0	91
4	Novel Bipolar Phenanthroimidazole Derivative Design for a Nondoped Deepâ€Blue Emitter with High Singlet Exciton Yields. Advanced Optical Materials, 2015, 3, 1215-1219.	3.6	84
5	Bisâ€Tridentate Iridium(III) Phosphors with Very High Photostability and Fabrication of Blueâ€Emitting OLEDs. Advanced Science, 2018, 5, 1800846.	5.6	75
6	Highâ€Performance Blue OLEDs Based on Phenanthroimidazole Emitters via Substitutions at the C6―and C9â€Positions for Improving Exciton Utilization. Chemistry - A European Journal, 2016, 22, 12130-12137.	1.7	68
7	Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.	7.8	59
8	Bipolar Blue Host Emitter with Unity Quantum Yield Allows Full Exciton Radiation in Single-Emissive-Layer Hybrid White Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 11691-11698.	4.0	59
9	<i>De novo</i> design of D–Ïf–A molecules as universal hosts for monochrome and white phosphorescent organic light-emitting diodes. Chemical Science, 2018, 9, 4062-4070.	3.7	58
10	Tuning electrical properties of phenanthroimidazole derivatives to construct multifunctional deep-blue electroluminescent materials. Journal of Materials Chemistry C, 2018, 6, 3584-3592.	2.7	57
11	Deepâ€Blue OLEDs with Rec.2020 Blue Gamut Compliance and EQE Over 22% Achieved by Conformation Engineering. Advanced Materials, 2022, 34, e2200537.	11.1	46
12	Anthracene-based fluorescent emitters toward superior-efficiency nondoped TTA-OLEDs with deep blue emission and low efficiency roll-off. Chemical Engineering Journal, 2021, 421, 127748.	6.6	43
13	A novel D–π–A blue fluorophore based on [1,2,4]triazolo[1,5- <i>a</i>]pyridine as an electron acceptor and its application in organic light-emitting diodes. Materials Chemistry Frontiers, 2019, 3, 1071-1079.	3.2	37
14	Mechanochromic asymmetric sulfone derivatives for use in efficient blue organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 8787-8794.	2.7	32
15	A novel spiro-annulated benzimidazole host for highly efficient blue phosphorescent organic light-emitting devices. Chemical Communications, 2018, 54, 4541-4544.	2.2	30
16	A pyridine based meta-linking deep-blue emitter with high conjugation extent and electroluminescence efficiencies. Journal of Materials Chemistry C, 2016, 4, 6249-6255.	2.7	26
17	Removing shortcomings of linear molecules to develop high efficiencies deep-blue organic electroluminescent materials. Organic Electronics, 2016, 38, 323-329.	1.4	25
18	High Performance NIR OLEDs with Low Efficiency Rollâ€Off by Leveraging Os(II) Phosphors and Exciplex Coâ€Host. Advanced Functional Materials, 2021, 31, 2102787.	7.8	25

ZE-LIN ZHU

#	Article	IF	CITATIONS
19	Polyphenylnaphthalene as a Novel Building Block for Highâ€Performance Deepâ€Blue Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2018, 6, 1700855.	3.6	23
20	Deep-blue high-efficiency triplet-triplet annihilation organic light-emitting diodes using donor- and acceptor-modified anthracene fluorescent emitters. Materials Today Energy, 2021, 21, 100727.	2.5	22
21	Blue-emitting bis-tridentate Ir(<scp>iii</scp>) phosphors: OLED performances <i>vs.</i> substituent effects. Journal of Materials Chemistry C, 2018, 6, 10486-10496.	2.7	20
22	Efficient Blue Electrophosphorescence and Hyperphosphorescence Generated by Bis-tridentate Iridium(III) Complexes. Inorganic Chemistry, 2022, 61, 8898-8908.	1.9	18
23	A high performance deep-blue emitter with an anti-parallel dipole design. Dyes and Pigments, 2017, 146, 219-225.	2.0	17
24	Ternary Acceptor–Donor–Acceptor Asymmetrical Phenanthroimidazole Molecule for Highly Efficient Nearâ€Ultraviolet Electroluminescence with External Quantum Efficiency (EQE) >4 %. Chemistry - A European Journal, 2018, 24, 15566-15571.	1.7	17
25	Revealing the new potential of an indandione unit for constructing efficient yellow thermally activated delayed fluorescence emitters with short emissive lifetimes. Journal of Materials Chemistry C, 2018, 6, 7111-7118.	2.7	17
26	Two-Channel Space Charge Transfer-Induced Thermally Activated Delayed Fluorescent Materials for Efficient OLEDs with Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 49066-49075.	4.0	17
27	Rational molecular design of bipolar phenanthroimidazole derivatives to realize highly efficient non-doped deep blue electroluminescence with CIEy Ë, 0.06 and EQE approaching 6%. Dyes and Pigments, 2020, 173, 107982.	2.0	16
28	Constructing deep-blue bis-tridentate Ir(<scp>iii</scp>) phosphors with fluorene-based dianionic chelates. Journal of Materials Chemistry C, 2021, 9, 1318-1325.	2.7	16
29	Revealing the role of 1,2,4-triazolate fragment of blue-emitting bis-tridentate Ir(III) phosphors: photophysical properties, photo-stabilities, and applications. Materials Today Energy, 2021, 20, 100636.	2.5	10
30	Chargeâ€Transfer Complexes: Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater.) Tj ETQqC) 0 0.8 gBT	/Oværlock 10
31	Efficient Pyrazolo[5,4â€∢i>f]quinoxaline Functionalized Os(II) Based Emitter with an Electroluminescence Peak Maximum at 811â€nm. Chemistry - A European Journal, 2022, 28, e202103202. 	1.7	7
32	Probing Electron Excitation Characters of Carboline-Based Bis-Tridentate Ir(III) Complexes. Molecules, 2021, 26, 6048.	1.7	3

Stepwise Access of Emissive Ir(III) Complexes Bearing a Multi-Dentate Heteroaromatic Chelate:
1.9 3
Fundamentals and Applications. Inorganic Chemistry, 2022, 61, 4384-4393.