List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/409107/publications.pdf Version: 2024-02-01

DINC SHEN

#	Article	IF	CITATIONS
1	Ultrafast and robust joining of 3YSZ and GH3128 superalloy using Cu interlayer under an electric field. Journal of Alloys and Compounds, 2022, 890, 161893.	5.5	5
2	Surface hydrate-assisted low- and medium-temperature sintering of MgO. Scripta Materialia, 2022, 206, 114258.	5.2	4
3	Pulsed current-driven wetting of 3YSZ by liquid Cu and its mechanisms. Journal of the European Ceramic Society, 2022, 42, 552-560.	5.7	4
4	Flash joining of 3YSZ and 430 SS using Ag–CuO filler. Ceramics International, 2022, 48, 4005-4014.	4.8	11
5	Electrochemical wetting of 3YSZ by Cu and ultrafast joining with a Ni-based superalloy. Journal of the European Ceramic Society, 2022, 42, 1113-1120.	5.7	2
6	Cold sintering of chitosan/hydroxyapatite composites. Materialia, 2022, 21, 101294.	2.7	3
7	Wire–powder–arc additive manufacturing: A viable strategy to fabricate carbide ceramic/aluminum alloy multi-material structures. Additive Manufacturing, 2022, 51, 102637.	3.0	6
8	Ultrafast high-temperature synthesis and densification of high-entropy carbides. Journal of the European Ceramic Society, 2022, 42, 4053-4065.	5.7	33
9	One-step synthesis and densification of BaTiO3 by reactive cold sintering. Scripta Materialia, 2022, 213, 114628.	5.2	13
10	DCâ€driven ultrafast transient liquid phase bonding of 3YSZ and GH3128 superalloy using Ni interlayer. Journal of the American Ceramic Society, 2022, 105, 5649-5663.	3.8	2
11	Lamellar and interpenetrated Al/(Al2O3–TiC) composites prepared by bidirectional freeze casting and melt infiltration. Ceramics International, 2022, , .	4.8	4
12	Ultrafast high-temperature sintering of bulk oxides. Scripta Materialia, 2021, 193, 103-107.	5.2	48
13	Wettability and reactivity between molten aluminum and randomly aligned carbon nanotubes. Journal of Materials Science, 2021, 56, 7799-7810.	3.7	2
14	Influence of Grain Refiners on the Wettability of Al2O3 Substrate by Aluminum Melt. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 382-392.	2.1	13
15	Role of Si in the wetting of TiC by Al. Journal of Materials Science, 2021, 56, 7791-7798.	3.7	2
16	Ultrafast densification of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by reactive flash sintering. Journal of the European Ceramic Society, 2021, 41, 2855-2860.	5.7	41
17	Synthesis and densification of hydroxyapatite by mechanochemically-activated reactive cold sintering. Scripta Materialia, 2021, 194, 113717.	5.2	13
18	Flash sintering of 3YSZ and in-situ joining with 304 stainless steel using copper as an interlayer. Scripta Materialia, 2021, 194, 113709.	5.2	7

#	Article	IF	CITATIONS
19	Bio-inspired lamellar hydroxyapatite/magnesium composites prepared by directional freezing and pressureless infiltration. Ceramics International, 2021, 47, 11183-11192.	4.8	5
20	Influences of Si and Ti on the wettability and reactivity of Al/graphite system at 900 ŰC. Materialia, 2021, 16, 101060.	2.7	3
21	Hydrated precursor-assisted densification of hydroxyapatite and its composites by cold sintering. Ceramics International, 2021, 47, 14348-14353.	4.8	15
22	Construction of nacre-mimetic composites with a "brick-and-mortar―architecture based on structural defects in ice-templating. Materials and Design, 2021, 204, 109668.	7.0	10
23	Reactive wetting of high-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 ceramic by molten 71Ag–27Cu–2Ti alloy at 1073–1273 K. Journal of the European Ceramic Society, 2021, 41, 5644-5649.	5.7	2
24	Effect of components on the microstructures and properties of rare-earth zirconate ceramics prepared by ultrafast high-throughput sintering. Journal of the European Ceramic Society, 2021, 41, 5768-5773.	5.7	16
25	Role of ion substitution and lattice water in the densification of cold-sintered hydroxyapatite. Scripta Materialia, 2020, 177, 141-145.	5.2	34
26	Exploiting bio-inspired high energy-absorbent metal/ceramic composites through emulsion-ice-templating and melt infiltration. Materialia, 2020, 14, 100884.	2.7	7
27	Electrochemically driven rapid wetting of 3YSZ by 60Cu–40Ag and its robust joining to 304 stainless steel. Journal of the European Ceramic Society, 2020, 40, 4281-4289.	5.7	5
28	Cold sintering of NaNO3/MgO heat-storage composite. Ceramics International, 2020, 46, 28955-28960.	4.8	25
29	Synthesis of damage-tolerant Cu-matrix composites with nacre-inspired laminate-reticular hierarchical architecture via tuning compositional wettability. Scripta Materialia, 2020, 186, 312-316.	5.2	22
30	Preparation and characterization of high damage-tolerance nacre-inspired magnesium alloy matrix composites with high carbon nanotube contents. Carbon, 2020, 162, 382-391.	10.3	10
31	Influence of matrix property and interfacial reaction on the mechanical performance and fracture mechanism of TiC reinforced Al matrix lamellar composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 775, 138956.	5.6	19
32	3D highly oriented metal foam: a competitive self-supporting anode for high-performance lithium-ion batteries. Journal of Materials Science, 2020, 55, 11462-11476.	3.7	8
33	Roles of direct current in ultrafast wetting of 3YSZ by Sn3.0Ag0.5Cu and joining to Ni. Materialia, 2019, 7, 100399.	2.7	2
34	The influence of surface orientation on the wetting and reaction at the Al/MgAl2O4 interfaces. Ceramics International, 2019, 45, 24031-24036.	4.8	3
35	DC-assisted rapid wetting of 3Y-PSZ by molten 72Ag–28Cu and its application in joining. Journal of the European Ceramic Society, 2019, 39, 2132-2139.	5.7	7
36	Optimization of the properties in Al/SiC composites by tailoring microstructure through gelatin freeze casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 748, 286-293.	5.6	21

#	Article	IF	CITATIONS
37	Electrically induced spreading of EGaIn on Cu substrate in an alkali solution under wetting and non-wetting conditions. Applied Surface Science, 2019, 490, 598-603.	6.1	17
38	Developing high-performance laminated Cu/TiC composites through melt infiltration of Ni-doped freeze-cast preforms. Ceramics International, 2019, 45, 11686-11693.	4.8	27
39	A novel approach to the fabrication of lamellar Al2O3/6061Al composites with high-volume fractions of hard phases. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 75-84.	5.6	19
40	Microstructures and mechanical characterizations of high-performance nacre-inspired Al/Al2O3 composites. Composites Part A: Applied Science and Manufacturing, 2019, 121, 465-473.	7.6	38
41	A novel strategy for fabricating biomimetic gradient metal-ceramic composites by dynamic freeze casting and pressure infiltration. Scripta Materialia, 2019, 167, 101-104.	5.2	18
42	Fabrication and characterization of robust freeze-cast alumina scaffolds with dense ceramic walls and controllable pore sizes. Journal of Materials Science, 2019, 54, 5224-5235.	3.7	10
43	Effect of freeze speed on the microstructure and damage-tolerance behavior of bio-inspired ZL205A/silicon carbide composites. Materials Characterization, 2019, 147, 207-214.	4.4	7
44	Roles of alloying elements in wetting of SiC by Al. Journal of Alloys and Compounds, 2019, 784, 1212-1220.	5.5	51
45	Effects of ceramic lamellae compactness and interfacial reaction on the mechanical properties of nacre-inspired Al/Al2O3–ZrO2 composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 326-334.	5.6	16
46	Current-driven spontaneous infiltration of molten Al into a porous PSZ preform with a lamellar structure. Materials Letters, 2018, 216, 212-215.	2.6	4
47	Formation mechanism and control of a large-scale lamellar structure in freeze-cast Al 2 O 3 ceramics under dual temperature gradients. Journal of the European Ceramic Society, 2018, 38, 2605-2611.	5.7	8
48	3D long-range ordered porous ceramics prepared by a novel bidirectional freeze-casting technique. Ceramics International, 2018, 44, 5803-5806.	4.8	17
49	Polarity effects on the wettability and interfacial chemistry at Cu–YSZ interface by applying a direct current. Journal of the European Ceramic Society, 2018, 38, 1790-1795.	5.7	16
50	High Wear-Resistant Aluminum Matrix Composite Layer Fabricated by MIG Welding with Lateral B4C Powder Injection. Journal of Materials Engineering and Performance, 2018, 27, 5700-5708.	2.5	4
51	Nacre-inspired lightweight and high-strength AZ91D/Mg2B2O5w composites prepared by ice templating and pressureless infiltration. Journal of Materials Science, 2018, 53, 12167-12177.	3.7	10
52	The role of TiO2 incorporation in the preparation of B4C/Al laminated composites with high strength and toughness. Ceramics International, 2018, 44, 15219-15227.	4.8	21
53	Al–7Si–5Cu/Al ₂ O ₃ –ZrO ₂ Laminated Composites with Excellent and Anisotropic Wear Resistance. Advanced Engineering Materials, 2018, 20, 1800540.	3.5	4
54	Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 2017, 43, 3831-3838.	4.8	43

#	Article	IF	CITATIONS
55	High compressive strength in nacre-inspired Alâ^'7Siâ^'5Cu/Al 2 O 3 –ZrO 2 composites at room and elevated temperatures by regulating interfacial reaction. Ceramics International, 2017, 43, 7369-7373.	4.8	12
56	High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 199-207.	5.6	30
57	Electrochemically-driven direct joining of Ni and ZrO2. Scripta Materialia, 2017, 141, 41-44.	5.2	19
58	Lamellar-interpenetrated Alâ^'Siâ^'Mg/Al2O3â^'ZrO2 composites prepared by freeze casting and pressureless infiltration. Ceramics International, 2017, 43, 3292-3297.	4.8	22
59	Reactive wetting of amorphous silica by molten Al–Mg alloys and their interfacial structures. Applied Surface Science, 2016, 377, 340-348.	6.1	9
60	Significant improvement in the wettability of ZrO2 by molten Al under the application of a direct current. Materials and Design, 2016, 111, 158-163.	7.0	19
61	Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template. Materials Letters, 2016, 183, 299-302.	2.6	29
62	Processing and mechanical properties of lamellar-structured Al–7Si–5Cu/TiC composites. Materials and Design, 2016, 106, 446-453.	7.0	33
63	The role of CuO–TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 2016, 23, 539-547.	2.6	25
64	Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al–Si–Mg/SiC composites prepared by freeze casting and pressureless infiltration. Ceramics International, 2016, 42, 9653-9659.	4.8	44
65	Influences of electric current on the wettability and interfacial microstructure in Sn/Fe system. Applied Surface Science, 2015, 328, 380-386.	6.1	10
66	Lamellar-interpenetrated Al–Si–Mg/SiC composites fabricated by freeze casting and pressureless infiltration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 78-84.	5.6	68
67	Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3–ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 2015, 50, 5039-5046.	3.7	19
68	Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system. Applied Surface Science, 2015, 355, 930-938.	6.1	49
69	Effects of direct current on the wetting behavior and interfacial morphology between molten Sn and Cu substrate. Journal of Alloys and Compounds, 2014, 586, 80-86.	5.5	48
70	Effect of structural transition in an amorphous Ni80P20 alloy on the wetting by a eutectic Sn–Bi solder. Journal of Materials Science, 2014, 49, 2932-2942.	3.7	1
71	Preparation of High-Strength Al–Mg–Si/Al2O3 Composites with Lamellar Structures Using Freeze Casting and Pressureless Infiltration Techniques. Acta Metallurgica Sinica (English Letters), 2014, 27, 944-950.	2.9	22
72	Wetting of polycrystalline SiC by molten Al and Alâ^'Si alloys. Applied Surface Science, 2014, 317, 140-146.	6.1	76

#	Article	IF	CITATIONS
73	Wetting and adhesion at Mg/MgO interfaces. Journal of Materials Science, 2013, 48, 6008-6017.	3.7	13
74	Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler. Journal of Materials Engineering and Performance, 2013, 22, 2602-2609.	2.5	18
75	Wetting and reaction of molten La with poly- and mono-crystalline MgO at 1323ÂK. Journal of Materials Science, 2013, 48, 960-966.	3.7	5
76	Reactive wetting in liquid magnesium/silica and magnesium/silicon systems. Applied Surface Science, 2013, 274, 124-130.	6.1	28
77	Wettability in reactive Sn-base alloy/Ni-base metallic glass systems. Applied Surface Science, 2013, 276, 424-432.	6.1	27
78	Wetting of WC by a Zr-base metallic glass-forming alloy. Materials Chemistry and Physics, 2013, 139, 646-653.	4.0	12
79	Wetting of amorphous and nanocrystalline Ni ₇₅ B ₁₅ Si ₁₀ substrates by molten Sn. Surface and Interface Analysis, 2013, 45, 854-858.	1.8	3
80	Role of Si in the Wetting of α-SiC by Al. , 2013, , 1493-1500.		0
81	Wetting of (0001) α-alumina single crystals by molten Mg–Al alloys in the presence of evaporation. Journal of Materials Science, 2012, 47, 8372-8380.	3.7	6
82	Synthesis of spherical NbB2â^'x particles by controlling the stoichiometry. CrystEngComm, 2012, 14, 1925.	2.6	14
83	A Common Regularity of Stoichiometry-Induced Morphology Evolution of Transition Metal Carbides, Nitrides, and Diborides during Self-Propagating High-Temperature Synthesis. Crystal Growth and Design, 2012, 12, 2814-2824.	3.0	41
84	Pinning–depinning behavior in the wetting of (0 0 0 1) α-Al2O3 single crystal by molten Mg. Applied Surface Science, 2011, 257, 10743-10747.	6.1	13
85	Mo2C intermediate layers for graphite–Cu system using the molten salt method. Fusion Engineering and Design, 2011, 86, 2965-2970.	1.9	18
86	Temperature Dependence of the Wettability between Glassâ€Forming Alloy Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ and Polycrystalline ZrO ₂ . Journal of the American Ceramic Society, 2011, 94, 2162-2170.	3.8	10
87	Reactive wetting and infiltration of polycrystalline WC by molten Zr2Cu alloy. Scripta Materialia, 2011, 64, 229-232.	5.2	33
88	Wetting of B4C, TiC and graphite substrates by molten Mg. Materials Chemistry and Physics, 2011, 130, 665-671.	4.0	39
89	Wetting and evaporation behaviors of molten Mg–Al alloy drops on partially oxidized α-SiC substrates. Materials Chemistry and Physics, 2011, 130, 1125-1133.	4.0	19
90	Wettability of amorphous and nanocrystalline Fe78B13Si9 substrates by molten Sn and Bi. Nanoscale Research Letters, 2011, 6, 318.	5.7	6

#	ARTICLE	IF	CITATIONS
91	Warping of triple line in the wetting of B ₄ C by a Cuâ€l at.% Cr alloy. Surface and Interface Analysis, 2011, 43, 1360-1364.	1.8	7
92	Wetting of TiC by molten Al at 1123–1323K. Acta Materialia, 2011, 59, 1898-1911.	7.9	86
93	Effect of Cr on the wetting in Cu/graphite system. Applied Surface Science, 2011, 257, 6276-6281.	6.1	70
94	Evaporation-coupled wetting of ZrO2 by molten Mg inÂArÂatmosphere. Applied Physics A: Materials Science and Processing, 2010, 98, 601-607.	2.3	8
95	Wetting of polycrystalline MgO by molten Mg under evaporation. Materials Chemistry and Physics, 2010, 122, 290-294.	4.0	14
96	Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates. Applied Surface Science, 2010, 256, 7043-7047.	6.1	19
97	Wetting of Cu substrates with micrometer and nanometer grains by molten Snâ€3.5Agâ€0.7Cu alloy. Surface and Interface Analysis, 2010, 42, 1681-1684.	1.8	5
98	Effect of substrate annealing on the wetting of metastable BNi-2 ribbons by molten Sn. Journal of Applied Physics, 2010, 107, 094901.	2.5	4
99	EFFECT OF Al CONTENT ON THE COMBUSTION SYNTHESIS OF (TiB ₂ - Al ₂ O ₃)/ Al PRODUCTS FROM AN Al - TiO ₂ - B ₂ O ₃	2.0	0
100	Growth Mechanism of TiC _{<i>x</i>} during Self-Propagating High-Temperature Synthesis in an Alâ^'Tiâ^'C System. Crystal Growth and Design, 2010, 10, 1590-1597.	3.0	41
101	Wetting of Polycrystalline α-Al2O3 by Molten Mg in Ar Atmosphere. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1621-1626.	2.2	6
102	Wetting of microcrystalline and nanocrystalline Ni substrates by molten Sn–3.5Ag–0.7Cu alloy. Materials Letters, 2010, 64, 2454-2457.	2.6	7
103	Role of Fe incorporation in the self-propagating high-temperature synthesis reaction in an Al–Ti–B ₄ C system. Journal of Materials Research, 2009, 24, 2066-2078.	2.6	1
104	Reactive wetting of polycrystalline TiC by molten Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ metallic glass alloy. Journal of Materials Research, 2009, 24, 2420-2427.	2.6	17
105	Synthesis and mechanical properties of TiC-reinforced Cu-based bulk metallic glass composites. Scripta Materialia, 2009, 60, 84-87.	5.2	25
106	Wetting of polycrystalline B4C by molten Al at 1173–1473K. Scripta Materialia, 2009, 60, 960-963.	5.2	51
107	Wettability of some refractory materials by molten SiO2–MnO–TiO2–FeOx slag. Materials Chemistry and Physics, 2009, 114, 681-686.	4.0	33
108	Wetting of polycrystalline W by molten Zr55Al10Ni5Cu30 alloy. Materials Chemistry and Physics, 2009, 115, 322-327.	4.0	15

#	Article	IF	CITATIONS
109	Wettability and reactivity between B4C and molten Zr55Cu30Al10Ni5 metallic glass alloy. Materials Chemistry and Physics, 2009, 117, 377-383.	4.0	13
110	Wetting of Polycrystalline α-Al2O3 by Molten Zr55Cu30Al10Ni5 Metallic Glass Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 444-449.	2.2	29
111	Wetting and evaporation behaviors of water–ethanol sessile drops on PTFE surfaces. Surface and Interface Analysis, 2009, 41, 951-955.	1.8	55
112	Effect of reactant C/Ti ratio on the stoichiometry of Combustion-synthesized TiCx in Ti-C system. Journal of the Ceramic Society of Japan, 2009, 117, 525-528.	1.1	5
113	Reaction Behavior and Mechanism during Self-Propagating High-Temperature Synthesis Reaction in an Al-TiO2-B4C System. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2008, 39, 613-618.	2.1	6
114	Effect of TiO2 addition on the combustion synthesis in the Ti–B4C system. Journal of Materials Research, 2008, 23, 1327-1333.	2.6	3
115	Strong work-hardening effect in a multiphase ZrCuAlNiO alloy. Applied Physics Letters, 2008, 92, .	3.3	23
116	Effect of Tempering on Microstructure and Mechanical Properties in a Multiphase ZrCuAlNiO Alloy. ISIJ International, 2008, 48, 984-987.	1.4	0
117	Fabrication of TiC and TiB2 locally reinforced steel matrix composites using a Fe–Ti–B4C–C system by an SHS-casting route. Journal of Materials Science, 2007, 42, 8350-8356.	3.7	24
118	Effect of temperature and surface roughness on the wettability of boron nitride by molten Al. Journal of Materials Science, 2007, 42, 3564-3568.	3.7	15
119	Reaction synthesis of TiC–TiB2/Al composites from an Al–Ti–B4C system. Journal of Materials Science, 2007, 42, 9927-9933.	3.7	38
120	Wettability of \$\$hbox{R}(01ar{1}2)\$\$ single crystalline and polycrystalline \$\$alphahbox{-}hbox{Al}_{2}hbox{O}_{3}\$\$ substrates by Al–Si alloys over wide composition and temperature ranges. Journal of Materials Science, 2006, 41, 7159-7164.	3.7	11
121	Surface Orientation and Wetting Phenomena in Si/alpha-Alumina System at 1723 K. Journal of the American Ceramic Society, 2005, 88, 912-917.	3.8	15
122	Effect of substrate surface orientation on the wettability and adhesion of α–Al2O3 single crystals by molten Cu. Journal of Materials Research, 2005, 20, 940-951.	2.6	17
123	Critical Factors Affecting the Wettability of α-Alumina by Molten Aluminum. Journal of the American Ceramic Society, 2004, 87, 1265-1273.	3.8	28
124	Reactive wetting of SiO2 substrates by molten Al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 583-588.	2.2	38
125	Wetting and reaction of MgO single crystals by molten Al at 1073–1473 K. Acta Materialia, 2004, 52, 887-898.	7.9	43
126	Wetting, Adhesion and Adsorption in Al-Si/(0112) α-Alumina System at 1723 K. Materials Transactions, 2004, 45, 2857-2863.	1.2	17

#	Article	IF	CITATIONS
127	Critical Factors Affecting the Wettability of αâ€Alumina by Molten Aluminum. Journal of the American Ceramic Society, 2004, 87, 2151-2159.	3.8	72
128	Wetting of (0001) α-Al2O3 single crystals by molten Al. Scripta Materialia, 2003, 48, 779-784.	5.2	73
129	The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere. Acta Materialia, 2003, 51, 4897-4906.	7.9	69
130	A study on laser sintering of Fe-Cu powder compacts. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2229-2235.	2.2	12
131	Intrinsic Wettability and Wetting Dynamics in the Al/a-Al ₂ O ₃ System. Ceramic Transactions, 0, , 113-119.	0.1	0