Yongbo Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4090934/publications.pdf

Version: 2024-02-01

117625 155660 3,288 79 34 55 citations g-index h-index papers 79 79 79 3385 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkynes with <i>H</i> -Phosphonates Leading to Alkynylphosphonates. Journal of the American Chemical Society, 2009, 131, 7956-7957.	13.7	268
2	Facile Regio- and Stereoselective Hydrometalation of Alkynes with a Combination of Carboxylic Acids and Group 10 Transition Metal Complexes: Selective Hydrogenation of Alkynes with Formic Acid. Journal of the American Chemical Society, 2011, 133, 17037-17044.	13.7	218
3	Dinickel(II) Complexes of Bis(N-heterocyclic carbene) Ligands Containing [Ni ₂ (ν-OH)] Cores as Highly Efficient Catalysts for the Coupling of Aryl Chlorides. Organometallics, 2008, 27, 5911-5920.	2.3	145
4	Copper Catalysis for Selective Heterocoupling of Terminal Alkynes. Journal of the American Chemical Society, 2016, 138, 12348-12351.	13.7	127
5	Copper-Catalyzed Aerobic Oxidative Amination of sp ³ Câ€"H Bonds: Efficient Synthesis of 2-Hetarylquinazolin-4(3 <i>H</i>)-ones. Organic Letters, 2014, 16, 3672-3675.	4.6	106
6	Synthesis and Characterization of Square-Planar Tetranuclear Silver and Gold Clusters Supported by a Pyrazole-Linked Bis(N-heterocyclic carbene) Ligand. Organometallics, 2007, 26, 2742-2746.	2.3	105
7	Cul/L (L=pyridine-functionalized 1,3-diketones) catalyzed C–N coupling reactions of aryl halides with NH-containing heterocycles. Tetrahedron, 2008, 64, 4254-4259.	1.9	103
8	Efficient Negishi Coupling Reactions of Aryl Chlorides Catalyzed by Binuclear and Mononuclear Nickelâ^'N-Heterocyclic Carbene Complexes. Journal of Organic Chemistry, 2008, 73, 8497-8501.	3.2	96
9	Metal- and Oxidant-Free Synthesis of Quinazolinones from <i>β</i> -Ketoesters with <i>o</i> -Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C–C Bond Cleavage. Journal of Organic Chemistry, 2015, 80, 9392-9400.	3.2	95
10	Mononuclear, dinuclear, hexanuclear, and one-dimensional polymeric silver complexes having ligand-supported and unsupported argentophilic interactions stabilized by pincer-like 2,6-bis(5-pyrazolyl)pyridine ligands. Dalton Transactions, 2008, , 1444.	3.3	94
11	Copper(II) Hydroxide Complexes of N-Heterocyclic Carbenes and Catalytic Oxidative Amination of Arylboronic Acids. Organometallics, 2010, 29, 1457-1464.	2.3	93
12	Synthesis, structural characterization, and luminescence properties of multinuclear silver complexes of pyrazole-functionalized NHC ligands containing Ag–Ag and Ag–π interactions. Journal of Organometallic Chemistry, 2008, 693, 205-215.	1.8	75
13	Selective PP and POP Bond Formations through Copperâ€Catalyzed Aerobic Oxidative Dehydrogenative Couplings of Hâ€Phosphonates. Angewandte Chemie - International Edition, 2010, 49, 6852-6855.	13.8	73
14	Visible Lightâ€Induced Regioselective Decarboxylative Alkylation of the C(<i>sp</i> ²)â°'H Bonds of Nonâ€Aromatic Heterocycles. Advanced Synthesis and Catalysis, 2019, 361, 4126-4132.	4.3	72
15	Direct Aerobic Oxidative Esterification and Arylation of P(O)–OH Compounds with Alcohols and Diaryliodonium Triflates. ACS Catalysis, 2015, 5, 537-543.	11.2	68
16	Systematic study for the stereochemistry of the Atherton–Todd reaction. Tetrahedron, 2013, 69, 9373-9380.	1.9	56
17	Stereospecific Halogenation of P(O)-H Bonds with Copper(II) Chloride Affording Optically Active Z ₁ Z ₂ P(O)Cl. Journal of Organic Chemistry, 2010, 75, 7924-7927.	3.2	55
18	Iron-catalyzed aerobic oxidative functionalization of sp ³ C–H bonds: a versatile strategy for the construction of N-heterocycles. Catalysis Science and Technology, 2015, 5, 2197-2202.	4.1	52

#	Article	IF	Citations
19	Cu(I)-Catalyzed 6- <i>endo-dig</i> Cyclization of Terminal Alkynes, 2-Bromoaryl Ketones, and Amides toward 1-Naphthylamines: Applications and Photophysical Properties. Journal of the American Chemical Society, 2019, 141, 2535-2544.	13.7	52
20	Metal-free aerobic oxidative C–N bond cleavage of tertiary amines for the synthesis of N-heterocycles with high atom efficiency. Organic and Biomolecular Chemistry, 2014, 12, 3802-3807.	2.8	50
21	Iron(III) Chlorideâ€Mediated Regio―and Stereoselective Chlorosulfonylation of Alkynes and Alkenes with Sodium Sulfinates. Advanced Synthesis and Catalysis, 2017, 359, 841-847.	4.3	48
22	Copperâ€Catalyzed Aerobic Oxidative Inert CïŁ¿C and CïŁ¿N Bond Cleavage: A New Strategy for the Synthesis of Tertiary Amides. Chemistry - A European Journal, 2014, 20, 12234-12238.	3.3	45
23	Cyclization of Ketones with Nitriles under Base: A General and Economical Synthesis of Pyrimidines. Organic Letters, 2018, 20, 3399-3402.	4.6	45
24	Palladium-catalyzed dehydrogenative coupling of terminal alkynes with secondary phosphine oxides. Chemical Communications, 2015, 51, 3549-3551.	4.1	43
25	Metal-Free Oxidative Annulation of 2-Naphthols with Terminal Alkynes Affording 2-Arylnaphtho[2,1 <i>-b</i>)furans. Organic Letters, 2016, 18, 3138-3141.	4.6	43
26	Copperâ€Catalyzed Selective Semihydrogenation of Terminal Alkynes with Hypophosphorous Acid. Advanced Synthesis and Catalysis, 2014, 356, 765-769.	4.3	42
27	Nickel-catalyzed (E)-selective semihydrogenation of internal alkynes with hypophosphorous acid. Journal of Organometallic Chemistry, 2014, 749, 51-54.	1.8	41
28	Palladium-Catalyzed Decarbonylative Alkynylation of Amides. Organic Letters, 2018, 20, 2741-2744.	4.6	41
29	Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Organic and Biomolecular Chemistry, 2014, 12, 247-250.	2.8	40
30	Transition-Metal-Free C–P Bond Formation via Decarboxylative Phosphorylation of Cinnamic Acids with P(O)H Compounds. Journal of Organic Chemistry, 2018, 83, 4190-4196.	3.2	40
31	Photoredox-catalyzed decarboxylative alkylation/cyclization of alkynylphosphine oxides: a metal- and oxidant-free method for accessing benzo[<i>b</i>)]phosphole oxides. Chemical Communications, 2019, 55, 233-236.	4.1	40
32	Palladium-Catalyzed Regio- and Stereoselective Coupling–Addition of Propiolates with Arylsulfonyl Hydrazides: A Pattern for Difunctionalization of Alkynes. Organic Letters, 2018, 20, 4023-4027.	4.6	39
33	Copper catalysed direct amidation of methyl groups with N–H bonds. Organic and Biomolecular Chemistry, 2015, 13, 7289-7293.	2.8	37
34	Palladium-Catalyzed Desulfitative Cross-Coupling of Arylsulfonyl Hydrazides with Terminal Alkynes: A General Approach toward Functionalized Internal Alkynes. Journal of Organic Chemistry, 2017, 82, 6764-6769.	3.2	35
35	Novel neutral octanuclear copper(i) complexes stabilized by pyridine linked bis(pyrazolate) ligands. Dalton Transactions, 2007, , 5123.	3.3	34
36	Mechanistic Studies on the Palladium-Catalyzed Cross Dehydrogenative Coupling of P(O)–H Compounds with Terminal Alkynes: Stereochemistry and Reactive Intermediates. Organometallics, 2015, 34, 5095-5098.	2.3	34

#	Article	IF	CITATIONS
37	Synthesis and Structure of Binuclear O/Sâ€Bridged Organobismuth Complexes and Their Cooperative Catalytic Effect on CO ₂ Fixation. ChemPlusChem, 2012, 77, 404-410.	2.8	29
38	Recent advances of catalytic processes on the transformation of alkynes into functional compounds. Chemical Engineering Science, 2017, 171, 404-425.	3.8	29
39	Selective Aerobic C–H Amination of Phenols with Primary Amines over Copper toward Benzoxazoles. Organic Letters, 2017, 19, 2849-2852.	4.6	27
40	General Oxidative Aryl C–P Bond Formation through Palladium-Catalyzed Decarbonylative Coupling of Aroylhydrazides with P(O)H Compounds. Organic Letters, 2019, 21, 3198-3203.	4.6	27
41	Cu-Catalyzed Oxidative Thioesterification of Aroylhydrazides with Disulfides. Journal of Organic Chemistry, 2021, 86, 739-749.	3.2	27
42	Stereoselective Synthesis of Phosphorylâ€6ubstituted Phenols. Advanced Synthesis and Catalysis, 2014, 356, 781-794.	4.3	26
43	Direct Amidation of Carboxylic Acids with Tertiary Amines: Amide Formation over Copper Catalysts through C–N Bond Cleavage. European Journal of Organic Chemistry, 2014, 2014, 4244-4247.	2.4	26
44	Copperâ€Catalyzed Aerobic Oxidative C(aryl)OH Bond Functionalization of Catechols with Amines Affording Benzoxazoles. Advanced Synthesis and Catalysis, 2015, 357, 2924-2930.	4.3	26
45	Synthesis, Structure and Applications of Hypervalent Organoantimony Compounds Having Intramolecular Eâ†'Sb (E = N, O, S) Coordinations. Current Organic Chemistry, 2012, 16, 2462-2481.	1.6	25
46	Base-promoted O-deprotonation/alkylation reaction of P(O) \hat{a} \in OH compounds with alkyl halides. Tetrahedron, 2014, 70, 9057-9063.	1.9	25
47	Stereospecific Aerobic Oxidative Dehydrocoupling of P(O)–H Bonds with Amines Catalyzed by Copper. Bulletin of the Chemical Society of Japan, 2014, 87, 400-402.	3.2	23
48	Copper-catalyzed direct esterification of P(O)–OH compounds with phenols. Tetrahedron, 2015, 71, 9293-9298.	1.9	20
49	Manganese(iii) acetate catalyzed oxidative amination of benzylic C(sp3)–H bonds with nitriles. Organic and Biomolecular Chemistry, 2017, 15, 2897-2901.	2.8	20
50	Selective Oxidative Cleavage of 3-Methylindoles with Primary Amines Affording Quinazolinones. Organic Letters, 2020, 22, 2522-2526.	4.6	20
51	Selective Addition of P(O)–H Bonds to Alkynes Catalyzed by Transition Metals Immobilized on Polystyrene-bound Triphenylphosphine. Chemistry Letters, 2013, 42, 1065-1067.	1.3	19
52	Transition metal-free oxidative ortho-acylation of phenols with N-heteroarylmethanes via double C–H activation. Catalysis Science and Technology, 2016, 6, 5792-5796.	4.1	19
53	Copper-catalyzed annulation of 2-bromobenzoic esters with terminal alkynes towards 3-substituted isocoumarins. Tetrahedron Letters, 2017, 58, 2433-2437.	1.4	19
54	Catalytic sp ³ C–CN Bond Cleavage: Ni-Mediated Phosphorylation of Alkylnitriles. Organic Letters, 2018, 20, 6746-6749.	4.6	19

#	Article	IF	Citations
55	Synthesis and structures of hypervalent organoantimony and organobismuth chlorides containing asymmetric C,E,C-chelating (E = O, S) ligands. Dalton Transactions, 2013, 42, 9476.	3.3	18
56	Catalyst-Free and Selective C–N Bond Functionalization: Stereospecific Three-Component Coupling of Amines, Dichloromethane, and >P(O)H Species Affording α-Aminophosphorus Compounds. Journal of Organic Chemistry, 2015, 80, 62-69.	3.2	17
57	Phosphorous Acid-Catalyzed Alkylation of Phenols with Alkenes. Journal of Organic Chemistry, 2020, 85, 14307-14314.	3.2	16
58	Metal-free regioselective hydrobromination of alkynes through C H/C Br activation. Tetrahedron Letters, 2014, 55, 4572-4575.	1.4	15
59	Cu-mediated nitrogen atom transfer via Cî€,N bond cleavage. Organic and Biomolecular Chemistry, 2015, 13, 9948-9952.	2.8	14
60	Phosphorous Acid Promoted Hydration–Condensation of Aromatic Alkynes with Aldehydes Affording Chalcones in an Oil/Water Two-Phase System. Synthesis, 2016, 48, 231-237.	2.3	14
61	Recent Advances in the Synthesis of Organophosphorus Compounds via Cross Coupling between Readily Available Materials and P-H Compounds. Chinese Journal of Organic Chemistry, 2017, 37, 1055.	1.3	13
62	Metalâ€Free Oxidative Condensation of Catechols, Aldehydes and NH ₄ OAc towards Benzoxazoles. Advanced Synthesis and Catalysis, 2021, 363, 3607-3614.	4.3	12
63	Synthesis and Structure of Organobismuth Chlorides and Triflates Containing (C,E)â€Chelating Ligands (E=O, S) and Their Catalytic Application in the Allylation of Aldehydes with Tetraallyltin. ChemPlusChem, 2013, 78, 1363-1369.	2.8	11
64	Cu(<scp>i</scp>) catalysis for selective condensation/bicycloaromatization of two different arylalkynes: direct and general construction of functionalized C–N axial biaryl compounds. Chemical Science, 2021, 13, 263-273.	7.4	10
65			

#	Article	IF	CITATION
73	Copper-Catalyzed 6- <i>endo</i> - <i>dig</i> Cyclization–Coupling of 2-Bromoaryl Ketones and Terminal Alkynes toward Naphthyl Aryl Ethers in Water. Organic Letters, 2022, 24, 4569-4574.	4.6	4
74	Copperâ€mediated simple and direct aerobic oxidative esterification of arylacetonitriles with alcohols/phenols. Applied Organometallic Chemistry, 2021, 35, .	3.5	3
75	Copper-Catalyzed Aerobic Oxidative C-P Coupling of Arylboronic Acids and Diethyl Phosphite under Air. Chinese Journal of Organic Chemistry, 2014, 34, 1340.	1.3	3
76	Photocatalytic C H alkylation of coumarins mediated by triphenylphosphine and sodium iodide. Tetrahedron Letters, 2022, , 153720.	1.4	3
77	TEMPO mediated oxidative annulation of aryl methyl ketones with amines/ammonium acetate for imidazole synthesis. Organic and Biomolecular Chemistry, 0, , .	2.8	3
78	Identification of Alkenyl- and Arylpalladium Hydrides with the Aid of Hydrosilanes. Chemistry Letters, 2013, 42, 1227-1229.	1.3	2
79	General and practical synthesis of naphtho $[2,1-d]$ oxazoles from naphthols and amines. Organic Chemistry Frontiers, $0,$,.	4.5	1