William R Sellers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4090509/publications.pdf

Version: 2024-02-01

45 papers

20,630 citations

34 h-index 233409 45 g-index

50 all docs

50 docs citations

times ranked

50

34627 citing authors

#	Article	IF	CITATIONS
1	David Livingston (1941–2021). Molecular Cell, 2022, 82, 4-7.	9.7	2
2	Comparative optimization of combinatorial CRISPR screens. Nature Communications, 2022, 13, 2469.	12.8	13
3	Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders. Nature Cancer, 2021, 2, 429-443.	13.2	29
4	Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell, 2021, 39, 466-479.	16.8	88
5	Molecular basis for substrate recruitment to the PRMT5 methylosome. Molecular Cell, 2021, 81, 3481-3495.e7.	9.7	41
6	Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nature Genetics, 2021, 53, 1664-1672.	21.4	61
7	Are CRISPR Screens Providing the Next Generation of Therapeutic Targets?. Cancer Research, 2021, 81, 5806-5809.	0.9	7
8	A Proof of Concept for Biomarker-Guided Targeted Therapy against Ovarian Cancer Based on Patient-Derived Tumor Xenografts. Cancer Research, 2020, 80, 4278-4287.	0.9	12
9	Quantitative Proteomics of the Cancer Cell Line Encyclopedia. Cell, 2020, 180, 387-402.e16.	28.9	596
10	FGF401, A First-In-Class Highly Selective and Potent FGFR4 Inhibitor for the Treatment of FGF19-Driven Hepatocellular Cancer. Molecular Cancer Therapeutics, 2019, 18, 2194-2206.	4.1	65
11	GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens. Genome Biology, 2019, 20, 137.	8.8	30
12	Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nature Communications, 2019, 10, 4346.	12.8	139
13	Capmatinib (INC280) Is Active Against Models of Non–Small Cell Lung Cancer and Other Cancer Types with Defined Mechanisms of MET Activation. Clinical Cancer Research, 2019, 25, 3164-3175.	7.0	104
14	Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 2019, 569, 503-508.	27.8	2,149
15	The landscape of cancer cell line metabolism. Nature Medicine, 2019, 25, 850-860.	30.7	350
16	The potent and selective cyclin-dependent kinases 4 and 6 inhibitor ribociclib (LEE011) is a versatile combination partner in preclinical cancer models. Oncotarget, 2018, 9, 35226-35240.	1.8	59
17	Dose and Schedule Determine Distinct Molecular Mechanisms Underlying the Efficacy of the p53–MDM2 Inhibitor HDM201. Cancer Research, 2018, 78, 6257-6267.	0.9	60
18	Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf $\langle \sup \hat{a}'' \hat{a}'' \langle \sup \rangle$ mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3151-3156.	7.1	48

#	Article	IF	CITATIONS
19	Discovery and Optimization of HKT288, a Cadherin-6–Targeting ADC for the Treatment of Ovarian and Renal Cancers. Cancer Discovery, 2017, 7, 1030-1045.	9.4	40
20	Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell, 2017, 170, 577-592.e10.	28.9	506
21	Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models. ELife, 2017, 6, .	6.0	35
22	ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. ELife, 2016, 5, .	6.0	64
23	Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 7773-7782.	6.4	229
24	High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Research, 2016, 76, 6950-6963.	0.9	30
25	CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions. Cancer Discovery, 2016, 6, 900-913.	9.4	320
26	Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535, 148-152.	27.8	674
27	Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science, 2016, 351, 1208-1213.	12.6	374
28	Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Reports, 2015, 16, 280-296.	4.5	200
29	Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nature Medicine, 2015, 21, 440-448.	30.7	408
30	High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 2015, 21, 1318-1325.	30.7	1,065
31	A distinct p53 target gene set predicts for response to the selective p53–HDM2 inhibitor NVP-CGM097. ELife, 2015, 4, .	6.0	65
32	Inhibiting Tankyrases Sensitizes KRAS-Mutant Cancer Cells to MEK Inhibitors via FGFR2 Feedback Signaling. Cancer Research, 2014, 74, 3294-3305.	0.9	34
33	Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 2013, 494, 251-255.	27.8	665
34	Rescue Screens with Secreted Proteins Reveal Compensatory Potential of Receptor Tyrosine Kinases in Driving Cancer Growth. Cancer Discovery, 2012, 2, 948-959.	9.4	94
35	FGFR Genetic Alterations Predict for Sensitivity to NVP-BGJ398, a Selective Pan-FGFR Inhibitor. Cancer Discovery, 2012, 2, 1118-1133.	9.4	297
36	Modulation of Activation-Loop Phosphorylation by JAK Inhibitors Is Binding Mode Dependent. Cancer Discovery, 2012, 2, 512-523.	9.4	106

3

#	Article	IF	CITATIONS
37	The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483, 603-607.	27.8	6,473
38	A Drug Resistance Screen Using a Selective MET Inhibitor Reveals a Spectrum of Mutations That Partially Overlap with Activating Mutations Found in Cancer Patients. Cancer Research, 2011, 71, 5255-5264.	0.9	109
39	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	27.8	3,331
40	COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 2010, 468, 968-972.	27.8	1,325
41	Inhibition of Hsp90 Down-regulates Mutant Epidermal Growth Factor Receptor (EGFR) Expression and Sensitizes EGFR Mutant Tumors to Paclitaxel. Cancer Research, 2008, 68, 589-596.	0.9	172
42	Inclusion of the ASH1 gene that governs the neuroendocrine differentiation of lung epithelium as an additional prototypic 'lineage-survival oncogene'. Nature Reviews Cancer, 2007, 7, 68-68.	28.4	0
43	Frequent HIN-1 Promoter Methylation and Lack of Expression in Multiple Human Tumor Types. Molecular Cancer Research, 2004, 2, 489-494.	3.4	46
44	The EZH2 polycomb transcriptional repressorâ€"a marker or mover of metastatic prostate cancer?. Cancer Cell, 2002, 2, 349-350.	16.8	86
45	Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 kinase activity. Oncogene, 2000, 19, 5703-5711.	5.9	21