InÃas Mesquita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4090044/publications.pdf

Version: 2024-02-01

		1039406	1199166
17	879	9	12
papers	citations	h-index	g-index
17	17	17	1779
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine, 2021, 147, 155267.	1.4	7
2	Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11, 2282.	5.8	68
3	The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis. Cell Reports, 2020, 30, 4052-4064.e7.	2.9	32
4	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008125.	1.3	25
5	IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cellular Oncology (Dordrecht), 2020, 43, 643-654.	2.1	25
6	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , $2020,14,e0008125.$		0
7	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		O
8	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , $2020,14,e0008125.$		0
9	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		O
10	Alterations on Cellular Redox States upon Infection and Implications for Host Cell Homeostasis. Experientia Supplementum (2012), 2018, 109, 197-220.	0.5	4
11	Cellular Metabolism at a Glance. Experientia Supplementum (2012), 2018, 109, 3-27.	0.5	O
12	Viral Manipulation of the Host Metabolic Network. Experientia Supplementum (2012), 2018, 109, 377-401.	0.5	13
13	The impact of IL-10 dynamic modulation on host immune response against visceral leishmaniasis. Cytokine, 2018, 112, 16-20.	1.4	23
14	IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. Journal of Allergy and Clinical Immunology, 2017, 140, 867-870.e9.	1.5	37
15	Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metabolism, 2016, 24, 807-819.	7.2	584
16	AMPK in Pathogens. Exs, 2016, 107, 287-323.	1.4	8
17	Exploring NAD+ metabolism in host–pathogen interactions. Cellular and Molecular Life Sciences, 2016, 73, 1225-1236.	2.4	53