M Angela Nieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4089968/publications.pdf

Version: 2024-02-01

107 36,104 61 109
papers citations h-index g-index

141 141 36318
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 2009, 139, 871-890.	13.5	8,592
2	EMT: 2016. Cell, 2016, 166, 21-45.	13.5	3,573
3	The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2000, 2, 76-83.	4.6	3,208
4	The snail superfamily of zinc-finger transcription factors. Nature Reviews Molecular Cell Biology, 2002, 3, 155-166.	16.1	1,557
5	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	16.1	1,195
6	The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development (Cambridge), 2005, 132, 3151-3161.	1.2	1,194
7	Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 2005, 436, 123-127.	13.7	1,159
8	Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. Journal of Clinical Investigation, 2009, 119, 1438-1449.	3.9	1,155
9	Metastatic Colonization Requires the Repression of the Epithelial-Mesenchymal Transition Inducer Prrx1. Cancer Cell, 2012, 22, 709-724.	7.7	832
10	Epithelial Plasticity: A Common Theme in Embryonic and Cancer Cells. Science, 2013, 342, 1234850.	6.0	821
11	Snail blocks the cell cycle and confers resistance to cell death. Genes and Development, 2004, 18, 1131-1143.	2.7	738
12	Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science, 1994, 264, 835-839.	6.0	717
13	The Ins and Outs of the Epithelial to Mesenchymal Transition in Health and Disease. Annual Review of Cell and Developmental Biology, 2011, 27, 347-376.	4.0	647
14	Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nature Medicine, 2015, 21, 989-997.	15.2	612
15	Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Molecular Medicine, 2009, 1, 303-314.	3.3	557
16	Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene, 2002, 21, 3241-3246.	2.6	522
17	Chapter 11 In Situ Hybridization Analysis of Chick Embryos in Whole Mount and Tissue Sections. Methods in Cell Biology, 1996, 51, 219-235.	0.5	446
18	A molecular role for lysyl oxidase-like 2 enzyme in Snail regulation and tumor progression. EMBO Journal, 2005, 24, 3446-3458.	3.5	409

#	Article	IF	CITATIONS
19	A New Role for E12/E47 in the Repression of E-cadherin Expression and Epithelial-Mesenchymal Transitions. Journal of Biological Chemistry, 2001, 276, 27424-27431.	1.6	395
20	Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO Journal, 2006, 25, 5603-5613.	3.5	294
21	Upholding a role for EMT in breast cancer metastasis. Nature, 2017, 547, E1-E3.	13.7	266
22	The epithelial–mesenchymal transition under control: Global programs to regulate epithelial plasticity. Seminars in Cancer Biology, 2012, 22, 361-368.	4.3	244
23	Upholding a role for EMT in pancreatic cancer metastasis. Nature, 2017, 547, E7-E8.	13.7	203
24	Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. International Journal of Developmental Biology, 2009, 53, 1541-1547.	0.3	197
25	Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development (Cambridge), 2003, 130, 483-494.	1.2	194
26	GluR5 and GluR6 Kainate Receptor Subunits Coexist in Hippocampal Neurons and Coassemble to Form Functional Receptors. Journal of Neuroscience, 2000, 20, 196-205.	1.7	179
27	Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development (Cambridge), 2002, 129, 1583-1593.	1.2	177
28	The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes. Molecular Cancer Research, 2002, 1, 68-78.	1.5	172
29	Growth factors as survival factors: Regulation of apoptosis. BioEssays, 1994, 16, 133-138.	1.2	168
30	Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. Journal of Cell Science, 2004, 117, 2827-2839.	1.2	151
31	Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mechanisms of Development, 1994, 47, 3-17.	1.7	142
32	Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mechanisms of Development, 1995, 51, 289-303.	1.7	140
33	Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nature Communications, 2019, 10, 2110.	5.8	139
34	Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration. Current Opinion in Genetics and Development, 2001, 11, 464-469.	1.5	136
35	Snail1 suppresses TGF- \hat{l}^2 -induced apoptosis and is sufficient to trigger EMT in hepatocytes. Journal of Cell Science, 2010, 123, 3467-3477.	1.2	134
36	Progressive Spatial Restriction of Sek-1 and Krox-20 Gene Expression during Hindbrain Segmentation. Developmental Biology, 1996, 173, 26-38.	0.9	117

#	Article	IF	CITATIONS
37	Chapter 9 In Situ Hybridization Analysis of Chick Embryos in Wholeâ€Mount and Tissue Sections. Methods in Cell Biology, 2008, 87, 169-185.	0.5	117
38	The early steps of neural crest development. Mechanisms of Development, 2001, 105, 27-35.	1.7	113
39	The class I bHLH factors E2-2A and E2-2B regulate EMT. Journal of Cell Science, 2009, 122, 1014-1024.	1.2	110
40	Snail family members and cell survival in physiological and pathological cleft palates. Developmental Biology, 2004, 265, 207-218.	0.9	107
41	In primary airway epithelial cells, the unjamming transition is distinct from the epithelial-to-mesenchymal transition. Nature Communications, 2020, 11, 5053.	5.8	107
42	Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16841-16846.	3.3	106
43	The physiology and pathology of the EMT. EMBO Reports, 2008, 9, 322-326.	2.0	101
44	Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends in Cell Biology, 2008, 18, 357-359.	3.6	101
45	Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO Journal, 2012, 31, 29-43.	3.5	101
46	The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends in Genetics, 2001, 17, 178-181.	2.9	100
47	Snail1 Is a Transcriptional Effector of FGFR3 Signaling during Chondrogenesis and Achondroplasias. Developmental Cell, 2007, 13, 872-883.	3.1	97
48	A gene regulatory network to control EMT programs in development and disease. Nature Communications, 2019, 10, 5115.	5.8	94
49	LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest. Development (Cambridge), 2004, 131, 4455-4465.	1.2	92
50	Reciprocal Repression between Sox3 and Snail Transcription Factors Defines Embryonic Territories at Gastrulation. Developmental Cell, 2011, 21, 546-558.	3.1	89
51	A right-handed signalling pathway drives heart looping in vertebrates. Nature, 2017, 549, 86-90.	13.7	85
52	Role of FGFs in the control of programmed cell death during limb development. Development (Cambridge), 2001, 128, 2075-2084.	1.2	85
53	Context-specific roles of EMT programmes in cancer cell dissemination. Nature Cell Biology, 2017, 19, 416-418.	4.6	80
54	Neural Induction in Whole Chick Embryo Cultures by FGF. Developmental Biology, 1998, 199, 42-54.	0.9	71

#	Article	IF	CITATIONS
55	Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. Journal of Cell Science, 2009, 122, 1574-1583.	1.2	70
56	Genetic Fate Mapping of Transient Cell Fate Reveals N-Cadherin Activity and Function in Tumor Metastasis. Developmental Cell, 2020, 54, 593-607.e5.	3.1	70
57	Snail1a and Snail1b cooperate in the anterior migration of the axial mesendoderm in the zebrafish embryo. Development (Cambridge), 2007, 134, 4073-4081.	1.2	68
58	Evolutionary history of the Snail/Scratch superfamily. Trends in Genetics, 2009, 25, 248-252.	2.9	64
59	Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development (Cambridge), 2002, 129, 1583-93.	1.2	64
60	How to become neural crest: From segregation to delamination. Seminars in Cell and Developmental Biology, 2005, 16, 655-662.	2.3	63
61	Apoptosis in human thymocytes after treatment with glucocorticoids. Clinical and Experimental Immunology, 2008, 88, 341-344.	1.1	62
62	Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Developmental Biology, 2009, 330, 73-82.	0.9	62
63	Snail 1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO Journal, 2009, 28, 686-696.	3.5	58
64	Deletion of H-Ras decreases renal fibrosis and myofibroblast activation following ureteral obstruction in mice. Kidney International, 2010, 77, 509-518.	2.6	56
65	Molecular Biology of Axon Guidance. Neuron, 1996, 17, 1039-1048.	3.8	55
66	Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. Journal of Cell Science, 2009, 122, 1452-1460.	1.2	54
67	Relative expression ofSlug, RhoB, and HNK-1 in the cranial neural crest of the early chicken embryo. Developmental Dynamics, 2004, 229, 136-139.	0.8	48
68	Reactivation of Snail Genes in Renal Fibrosis and Carcinomas: A Process of Reversed Embryogenesis?. Cell Cycle, 2007, 6, 638-642.	1.3	45
69	The expression of chick EphA7 during segmentation of the central and peripheral nervous system. Mechanisms of Development, 1997, 68, 173-177.	1.7	39
70	Molecular Mechanisms Controlling the Migration of Striatal Interneurons. Journal of Neuroscience, 2015, 35, 8718-8729.	1.7	39
71	Novel Expression Gradients of Eph-like Receptor Tyrosine Kinases in the Developing Chick Retina. Developmental Biology, 1997, 188, 363-368.	0.9	34
72	Differential Expression of Eph Receptors and Ephrins Correlates with the Formation of Topographic Projections in Primary and Secondary Visual Circuits of the Embryonic Chick Forebrain. Developmental Biology, 2001, 234, 289-303.	0.9	34

#	Article	IF	CITATIONS
73	Review of the recently defined molecular mechanisms underlying thanatophoric dysplasia and their potential therapeutic implications for achondroplasia. American Journal of Medical Genetics, Part A, 2010, 152A, 245-255.	0.7	34
74	A Celebration of the New Head and an Evaluation of the New Mouth. Neuron, 2003, 37, 895-898.	3.8	32
75	Snail genes at the crossroads of symmetric and asymmetric processes in the developing mesoderm. EMBO Reports, 2007, 8, 104-109.	2.0	28
76	Biological Potential of a Functional Human SNAILRetrogene. Journal of Biological Chemistry, 2002, 277, 38803-38809.	1.6	27
77	Epithelial plasticity, stemness and pluripotency. Cell Research, 2010, 20, 1086-1088.	5.7	26
78	The expression of Scratch genes in the developing and adult brain. Developmental Dynamics, 2006, 235, 2586-2591.	0.8	24
79	Scratch2 Prevents Cell Cycle Re-Entry by Repressing miR-25 in Postmitotic Primary Neurons. Journal of Neuroscience, 2013, 33, 5095-5105.	1.7	23
80	Expression of chickenslug andsnail in mesenchymal components of the developing central nervous system. Developmental Dynamics, 2004, 230, 144-148.	0.8	22
81	eEF1A Mediates the Nuclear Export of SNAG-Containing Proteins via the Exportin5-Aminoacyl-tRNA Complex. Cell Reports, 2013, 5, 727-737.	2.9	22
82	Repression of Puma by Scratch2 is required for neuronal survival during embryonic development. Cell Death and Differentiation, 2011, 18, 1196-1207.	5.0	20
83	Multiple roles of Eph-like kinases and their ligands during development. Cell and Tissue Research, 1997, 290, 243-250.	1.5	19
84	Snail3 orthologues in vertebrates: divergent members of the Snail zinc-finger gene family. Development Genes and Evolution, 2004, 214, 47-53.	0.4	16
85	<i>Snail2</i> and <i>Zeb2</i> repress <i>P-Cadherin</i> to define embryonic territories in the chick embryo. Development (Cambridge), 2017, 144, 649-656.	1.2	16
86	MicroRNAs Establish the Right-Handed Dominance of the Heart Laterality Pathway in Vertebrates. Developmental Cell, 2019, 51, 446-459.e5.	3.1	15
87	The Evolutionary History of Ephs and Ephrins: Toward Multicellular Organisms. Molecular Biology and Evolution, 2020, 37, 379-394.	3.5	13
88	Expression of EphA receptors and ligands during chick cerebellar development. Mechanisms of Development, 2002, 114, 225-229.	1.7	12
89	A new regulatory loop in cancer-cell invasion. EMBO Reports, 2008, 9, 521-522.	2.0	11
90	Thanatophoric dysplasia type II with encephalocele and semilobar holoprosencephaly: Insights into its pathogenesis. American Journal of Medical Genetics, Part A, 2011, 155, 197-202.	0.7	10

#	Article	IF	CITATIONS
91	Identification of p53-target genes in Danio rerio. Scientific Reports, 2016, 6, 32474.	1.6	10
92	Evolution of the Neural Crest., 2006, 589, 235-244.		10
93	The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue. Retrovirology, 2012, 9, 21.	0.9	9
94	Glucose Metabolism Takes Center Stage in Epithelial-Mesenchymal Plasticity. Developmental Cell, 2020, 53, 133-135.	3.1	9
95	Mutual exclusion of transcription factors and cell behaviour in the definition of vertebrate embryonic territories. Current Opinion in Genetics and Development, 2012, 22, 308-314.	1.5	5
96	A snail tale and the chicken embryo. International Journal of Developmental Biology, 2018, 62, 121-126.	0.3	5
97	Reply to: Zebrafish prrx1a mutants have normal hearts. Nature, 2020, 585, E17-E19.	13.7	5
98	An Epigenetic Mark that Protects the Epithelial Phenotype in Health and Disease. Cell Stem Cell, 2011, 8, 462-463.	5.2	4
99	50+ shades of EMT in 20 years of embryoâ^'cancer bonding. Nature Reviews Molecular Cell Biology, 2020, 21, 563-563.	16.1	4
100	Gâ€proteinâ€coupled receptor kinase 2 safeguards epithelial phenotype in head and neck squamous cell carcinomas. International Journal of Cancer, 2020, 147, 218-229.	2.3	2
101	Proliferation and EMT trigger heart repair. Nature Cell Biology, 2020, 22, 1291-1292.	4.6	2
102	Are You Interested or Afraid of Working on EMT?. Methods in Molecular Biology, 2021, 2179, 19-28.	0.4	2
103	Antifibrotic drugs as therapeutic tools in resistant melanoma. EMBO Molecular Medicine, 2022, 14, e15449.	3.3	2
104	13-P126 scratch2 antagonizes p53-mediated apoptosis in the zebrafish spinal cord. Mechanisms of Development, 2009, 126, S233.	1.7	1
105	Riding the right wave: would the real neural crest please stand up?. Evolution & Development, 2008, 10, 509-510.	1.1	0
106	Snail Transcription Factors., 2008,, 2770-2772.		0
107	Snail Transcription Factors. , 2014, , 4274-4279.		0