
Eli J Borrego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4089715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amino acid–derived defense metabolites from plants: AÂpotential source to facilitate novel antimicrobial development. Journal of Biological Chemistry, 2021, 296, 100438.	3.4	31
2	An updated census of the maize TIFY family. PLoS ONE, 2021, 16, e0247271.	2.5	10
3	A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. International Journal of Molecular Sciences, 2021, 22, 6877.	4.1	6
4	<i>Fusarium verticillioides</i> Induces Maize-Derived Ethylene to Promote Virulence by Engaging Fungal G-Protein Signaling. Molecular Plant-Microbe Interactions, 2021, 34, 1157-1166.	2.6	3
5	Maize biochemistry in response to root herbivory was mediated by domestication, spread, and breeding. Planta, 2021, 254, 70.	3.2	5
6	Oxylipins are implicated as communication signals in tomato–root-knot nematode (Meloidogyne) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
7	Oxylipins Other Than Jasmonic Acid Are Xylem-Resident Signals Regulating Systemic Resistance Induced by <i>Trichoderma virens</i> in Maize. Plant Cell, 2020, 32, 166-185.	6.6	91
8	Differential Evolution of α-Glucan Water Dikinase (GWD) in Plants. Plants, 2020, 9, 1101.	3.5	4
9	Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by <i>Colletotrichum graminicola</i> in maize. Molecular Plant Pathology, 2020, 21, 702-715.	4.2	43
10	Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). Phytochemistry, 2020, 174, 112334.	2.9	33
11	Rosette core fungal resistance in Arabidopsis thaliana. Planta, 2019, 250, 1941-1953.	3.2	2
12	Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses. Frontiers in Microbiology, 2019, 10, 2106.	3.5	145
13	Investigating a Photolytic Metabolite in the Nocturnal GrasshopperSchistocerca ceratiola(Orthoptera: Acrididae). Annals of the Entomological Society of America, 2019, 112, 50-55.	2.5	Ο
14	Tomato SIWRKY3 acts as a positive regulator for resistance against the root-knot nematode <i>Meloidogyne javanica</i> by activating lipids and hormone-mediated defense-signaling pathways. Plant Signaling and Behavior, 2019, 14, 1601951.	2.4	24
15	Arctic marine fungi: biomass, functional genes, and putative ecological roles. ISME Journal, 2019, 13, 1484-1496.	9.8	69
16	CIRCADIAN CLOCK-ASSOCIATED1 Controls Resistance to Aphids by Altering Indole Glucosinolate Production. Plant Physiology, 2019, 181, 1344-1359.	4.8	34
17	Oxylipins from both pathogen and host antagonize jasmonic acidâ€mediated defence via the 9â€lipoxygenase pathway in <i>Fusarium verticillioides</i> infection of maize. Molecular Plant Pathology, 2018, 19, 2162-2176.	4.2	42
18	Maize seedling morphology and defence hormone profiles, but not herbivory tolerance, were mediated by domestication and modern breeding. Annals of Applied Biology, 2017, 170, 315-332.	2.5	14

mediated by domestication and modern breeding. Annals of Applied Biology, 2017, 170, 315-332. 18

Eli J Borrego

#	Article	IF	CITATIONS
19	In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3393-3396.	7.1	116
20	A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 2017, 49, 1364-1372.	21.4	199
21	Reply to Dong and Zhao: Plant stress via Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5488-E5490.	7.1	4
22	Seed-Derived Ethylene Facilitates Colonization but Not Aflatoxin Production by Aspergillus flavus in Maize. Frontiers in Plant Science, 2017, 8, 415.	3.6	14
23	Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance. PLoS ONE, 2017, 12, e0181265.	2.5	44
24	Synthesis and Functions of Jasmonates in Maize. Plants, 2016, 5, 41.	3.5	92
25	New perspectives into jasmonate roles in maize. Plant Signaling and Behavior, 2014, 9, e970442.	2.4	23
26	Two closely related members of <i><scp>A</scp>rabidopsis</i> 13â€lipoxygenases (13â€ <scp>LOXs</scp>), <scp>LOX3</scp> and <scp>LOX4</scp> , reveal distinct functions in response to plantâ€parasitic nematode infection. Molecular Plant Pathology, 2014, 15, 319-332.	4.2	64
27	The Novel Monocot-Specific 9-Lipoxygenase ZmLOX12 Is Required to Mount an Effective Jasmonate-Mediated Defense Against <i>Fusarium verticillioides</i> in Maize. Molecular Plant-Microbe Interactions, 2014, 27, 1263-1276.	2.6	89
28	The maize lipoxygenase, <i>Zm<scp>LOX</scp>10</i> , mediates green leaf volatile, jasmonate and herbivoreâ€induced plant volatile production for defense against insect attack. Plant Journal, 2013, 74, 59-73.	5.7	217
29	Root-expressed maize lipoxygenase 3 negatively regulates induced systemic resistance to Colletotrichum graminicola in shoots. Frontiers in Plant Science, 2013, 4, 510.	3.6	42
30	Quantification of Fungal Colonization, Sporogenesis, and Production of Mycotoxins Using Kernel Bioassays. Journal of Visualized Experiments, 2012, , .	0.3	24
31	Lipid-Mediated Signaling Between Fungi and Plants. , 2012, , 249-260.		6
32	Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses. , O, , .		33
33	Transgenic Soybeans Expressing Phosphatidylinositol-3-Phosphate-Binding Proteins Show Enhanced Resistance Against the Oomycete Pathogen Phytophthora solae. Frontiers in Microbiology, 0, 13, .	3.5	2