Jon W Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of action of memantine. Current Opinion in Pharmacology, 2006, 6, 61-67.	3.5	390
2	Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature, 2009, 459, 703-707.	27.8	293
3	Mg ²⁺ Imparts NMDA Receptor Subtype Selectivity to the Alzheimer's Drug Memantine. Journal of Neuroscience, 2009, 29, 2774-2779.	3.6	222
4	Trapping Channel Block of NMDA-Activated Responses By Amantadine and Memantine. Journal of Neurophysiology, 1997, 77, 309-323.	1.8	217
5	Amantadine Inhibits NMDA Receptors by Accelerating Channel Closure during Channel Block. Journal of Neuroscience, 2005, 25, 3312-3322.	3.6	205
6	Molecular bases of NMDA receptor subtypeâ€dependent properties. Journal of Physiology, 2015, 593, 83-95.	2.9	107
7	Structural Rearrangements of NR1/NR2A NMDA Receptors during Allosteric Inhibition. Neuron, 2008, 57, 80-93.	8.1	106
8	Recent insights into the mode of action of memantine and ketamine. Current Opinion in Pharmacology, 2015, 20, 54-63.	3.5	79
9	NMDA Receptor NR2 Subunit Dependence of the Slow Component of Magnesium Unblock. Journal of Neuroscience, 2006, 26, 5825-5834.	3.6	77
10	A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit intersubunit interaction. Nature Neuroscience, 2012, 15, 406-413.	14.8	77
11	Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. Journal of Physiology, 2009, 587, 4589-4604.	2.9	75
12	Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block. Nature Neuroscience, 1998, 1, 451-461.	14.8	64
13	Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization. Journal of Neuroscience, 2017, 37, 9686-9704.	3.6	57
14	Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. Journal of Neurophysiology, 2012, 107, 2232-2243.	1.8	52
15	The Role of GluN2C-Containing NMDA Receptors in Ketamine's Psychotogenic Action and in Schizophrenia Models. Journal of Neuroscience, 2016, 36, 11151-11157.	3.6	52
16	Posttetanic potentiation and presynaptically induced long-term potentiation at the mossy fiber synapse in rat hippocampus. Journal of Neurobiology, 1995, 26, 370-385.	3.6	50
17	Synaptic zinc inhibition of NMDA receptors depends on the association of GluN2A with the zinc transporter ZnT1. Science Advances, 2020, 6, .	10.3	43
18	Voltageâ€dependent gating of NR1/2B NMDA receptors. Journal of Physiology, 2008, 586, 5727-5741.	2.9	42

Jon W Johnson

#	Article	IF	CITATIONS
19	Free intracellular Mg 2+ concentration and inhibition of NMDA responses in cultured rat neurons. Journal of Physiology, 2001, 533, 729-743.	2.9	39
20	Effects of memantine on the excitation-inhibition balance in prefrontal cortex. Neurobiology of Disease, 2016, 96, 75-83.	4.4	36
21	Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1596-1603.	3.8	33
22	Comparison of behavioral effects of the NMDA receptor channel blockers memantine and ketamine in rats. Pharmacology Biochemistry and Behavior, 2013, 109, 67-76.	2.9	31
23	Lgr5 + amacrine cells possess regenerative potential in the retina of adult mice. Aging Cell, 2015, 14, 635-643.	6.7	31
24	Mechanistic and Structural Determinants of NMDA Receptor Voltage-Dependent Gating and Slow Mg ²⁺ Unblock. Journal of Neuroscience, 2013, 33, 4140-4150.	3.6	26
25	All atom NMDA receptor transmembrane domain model development and simulations in lipid bilayers and water. PLoS ONE, 2017, 12, e0177686.	2.5	23
26	Oxygen–Glucose Deprivation Differentially Affects Neocortical Pyramidal Neurons and Parvalbumin-Positive Interneurons. Neuroscience, 2019, 412, 72-82.	2.3	21
27	Effects of Mg2+ on recovery of NMDA receptors from inhibition by memantine and ketamine reveal properties of a second site. Neuropharmacology, 2018, 137, 344-358.	4.1	19
28	A versatile optical tool for studying synaptic GABAA receptor trafficking. Journal of Cell Science, 2017, 130, 3933-3945.	2.0	15
29	Whole-Cell Patch-Clamp Analysis of Recombinant NMDA Receptor Pharmacology Using Brief Glutamate Applications. Methods in Molecular Biology, 2014, 1183, 23-41.	0.9	14
30	New Cav2 calcium channel gating modifiers with agonist activity and therapeutic potential to treat neuromuscular disease. Neuropharmacology, 2018, 131, 176-189.	4.1	11
31	Inhibition of NMDA receptors through a membrane-to-channel path. Nature Communications, 2022, 13, .	12.8	11
32	Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease. European Journal of Medicinal Chemistry, 2022, 236, 114354.	5.5	10
33	Low-Density Neuronal Cultures from Human Induced Pluripotent Stem Cells. Molecular Neuropsychiatry, 2017, 3, 28-36.	2.9	7
34	Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. ACS Chemical Neuroscience, 2018, 9, 2722-2730.	3.5	7
35	Interplay between Gating and Block of Ligand-Gated Ion Channels. Brain Sciences, 2020, 10, 928.	2.3	7
36	Acid Tests of N-Methyl-d-aspartate Receptor Gating Basics. Molecular Pharmacology, 2003, 63, 1199-1201.	2.3	2

#	Article	IF	CITATIONS
37	Endogenous Pink1 Regulates Dendritic Architecture and Spinogenesis. FASEB Journal, 2022, 36, .	0.5	0