List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research, 2006, 40, 3297-3303.	5.3	636
2	Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 2007, 41, 4373-4382.	5.3	508
3	Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Science of the Total Environment, 2011, 409, 2894-2901.	3.9	311
4	Evaluation of Pharmaceuticals and Personal Care Products as Water-soluble Molecular Markers of Sewage. Environmental Science & Technology, 2008, 42, 6347-6353.	4.6	291
5	Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Science of the Total Environment, 2018, 627, 1253-1263.	3.9	236
6	Ubiquitous occurrence of sulfonamides in tropical Asian waters. Science of the Total Environment, 2013, 452-453, 108-115.	3.9	204
7	Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. Journal of Hazardous Materials, 2013, 260, 305-312.	6.5	181
8	IDENTIFICATION OF ESTROGENIC COMPOUNDS IN WASTEWATER EFFLUENT. Environmental Toxicology and Chemistry, 2004, 23, 2807.	2.2	146
9	Learning from the past and considering the future of chemicals in the environment. Science, 2020, 367, 384-387.	6.0	146
10	Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Science of the Total Environment, 2011, 409, 5305-5312.	3.9	113
11	Pepper mild mottle virus as an indicator and a tracer of fecal pollution in water environments: Comparative evaluation with wastewater-tracer pharmaceuticals in Hanoi, Vietnam. Science of the Total Environment, 2015, 506-507, 287-298.	3.9	108
12	Occurrence of 70 pharmaceutical and personal care products in Tone River basin in Japan. Water Science and Technology, 2007, 56, 133-140.	1.2	105
13	Rapid determination of free and conjugated estrogen in different water matrices by liquid chromatography–tandem mass spectrometry. Chemosphere, 2009, 77, 1440-1446.	4.2	87
14	Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Science and Technology, 2008, 58, 1541-1546.	1.2	79
15	Multiple evaluations of the removal of pollutants in road runoff by soil infiltration. Water Research, 2008, 42, 2745-2755.	5.3	77
16	Oseltamivir Carboxylate, the Active Metabolite of Oseltamivir Phosphate (Tamiflu), Detected in Sewage Discharge and River Water in Japan. Environmental Health Perspectives, 2010, 118, 103-107.	2.8	77
17	Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams. Ecotoxicology and Environmental Safety, 2017, 144, 338-350.	2.9	75
18	Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Science and Technology, 2006, 53, 227-233.	1.2	70

#	Article	IF	CITATIONS
19	De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water. Journal of Hazardous Materials, 2012, 227-228, 49-54.	6.5	68
20	Modeling the Photochemical Attenuation of Down-the-Drain Chemicals during River Transport by Stochastic Methods and Field Measurements of Pharmaceuticals and Personal Care Products. Environmental Science & Technology, 2013, 47, 13571-13577.	4.6	61
21	Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and <i>p</i> â€thymol. Journal of Applied Toxicology, 2013, 33, 1222-1229.	1.4	60
22	Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms. Water Science and Technology, 2006, 53, 65-72.	1.2	55
23	Occurrence and fate of oseltamivir carboxylate (Tamiflu) and amantadine in sewage treatment plants. Chemosphere, 2010, 81, 13-17.	4.2	51
24	Co-occurrence of Estrogenic and Antiestrogenic Activities in Wastewater: Quantitative Evaluation of Balance by <i>in Vitro</i> ERα Reporter Gene Assay and Chemical Analysis. Environmental Science & Technology, 2014, 48, 6366-6373.	4.6	49
25	Assessing the population equivalent and performance of wastewater treatment through the ratios of pharmaceuticals and personal care products present in a river basin: Application to the River Thames basin, UK. Science of the Total Environment, 2017, 575, 1100-1108.	3.9	49
26	pH, ionic strength and dissolved organic matter alter aggregation of fullerene C60 nanoparticles suspensions in wastewater. Journal of Hazardous Materials, 2013, 244-245, 582-587.	6.5	47
27	Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants. Journal of Hazardous Materials, 2011, 190, 897-902.	6.5	43
28	Synchronous Dynamics of Observed and Predicted Values of Anti-influenza drugs in Environmental Waters during a Seasonal Influenza Outbreak. Environmental Science & Technology, 2012, 46, 12873-12881.	4.6	43
29	The different fate of antibiotics in the Thames River, UK, and the Katsura River, Japan. Environmental Science and Pollution Research, 2018, 25, 1903-1913.	2.7	43
30	Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants. Water Science and Technology, 2010, 61, 1739-1747.	1.2	42
31	A new method for quantifying N-nitrosamines in wastewater samples by gas chromatography—triple quadrupole mass spectrometry. Talanta, 2012, 97, 256-261.	2.9	42
32	Source estimation of pharmaceuticals based on catchment population and in-stream attenuation in Yodo River watershed, Japan. Science of the Total Environment, 2018, 615, 964-971.	3.9	42
33	Occurrence of preservatives and antimicrobials in Japanese rivers. Chemosphere, 2014, 107, 393-399.	4.2	41
34	Mass balance of anti-influenza drugs discharged into the Yodo River system, Japan, under an influenza outbreak. Chemosphere, 2013, 93, 1672-1677.	4.2	38
35	Occurrence of pharmaceutical and personal care products in Cau River, Vietnam. Environmental Science and Pollution Research, 2021, 28, 12082-12091.	2.7	32
36	How seasonality affects the flow of estrogens and their conjugates in one of Japan's most populous catchments. Environmental Pollution, 2011, 159, 2906-2912.	3.7	31

#	Article	IF	CITATIONS
37	Performance of combined ozonation, coagulation and ceramic membrane process for water reclamation: Effects and mechanism of ozonation on virus coagulation. Separation and Purification Technology, 2018, 192, 429-434.	3.9	29
38	Effects of the inclusion of biological activated carbon on membrane fouling in combined process of ozonation, coagulation and ceramic membrane filtration for water reclamation. Chemosphere, 2019, 220, 20-27.	4.2	29
39	The arrival and discharge of conjugated estrogens from a range of different sewage treatment plants in the UK. Chemosphere, 2011, 82, 1124-1128.	4.2	28
40	Evaluation of the photolysis of pharmaceuticals within a river by 2 year field observations and toxicity changes by sunlight. Environmental Sciences: Processes and Impacts, 2014, 16, 2796-2803.	1.7	24
41	Linking changes in antibiotic effluent concentrations to flow, removal and consumption in four different UK sewage treatment plants over four years. Environmental Pollution, 2017, 220, 919-926.	3.7	24
42	Pretreatment of ceramic membrane microfiltration in wastewater reuse: A comparison between ozonation and coagulation. Journal of Environmental Management, 2019, 251, 109555.	3.8	22
43	Ecological risk assessment of urban creek sediments contaminated by untreated domestic wastewater: potential contribution of antimicrobials and a musk fragrance. Environmental Technology (United) Tj ETQq1 1 ().78 1 1914 r	gB⊉ ‡ Overlock
44	Adsorption of fullerene nC60 on activated sludge: Kinetics, equilibrium and influencing factors. Chemical Engineering Journal, 2013, 225, 365-371.	6.6	20
45	Characterization of nitrosamines and nitrosamine precursors as non-point source pollutants during heavy rainfall events in an urban water environment. Journal of Hazardous Materials, 2022, 424, 127552.	6.5	20
46	Fate of oestrogenic compounds and identification of oestrogenicity in a wastewater treatment process. Water Science and Technology, 2006, 53, 51-63.	1.2	18
47	Biological Activity-Based Prioritization of Pharmaceuticals in Wastewater for Environmental Monitoring: G Protein-Coupled Receptor Inhibitors. Environmental Science & Technology, 2020, 54, 1720-1729.	4.6	18
48	Occurrence and fate of N-nitrosamines and their formation potential in three wastewater treatment plants in Japan. Water Science and Technology, 2013, 68, 2118-2126.	1.2	17
49	Prediction, risk and control of anti-influenza drugs in the Yodo River Basin, Japan during seasonal and pandemic influenza using the transmission model for infectious disease. Science of the Total Environment, 2015, 521-522, 68-74.	3.9	17
50	Removal Characteristics of N-Nitrosamines and Their Precursors by Pilot-Scale Integrated Membrane Systems for Water Reuse. International Journal of Environmental Research and Public Health, 2018, 15, 1960.	1.2	17
51	Numerical simulation of organic chemicals in a marine environment using a coupled 3D hydrodynamic and ecotoxicological model. Marine Pollution Bulletin, 2004, 48, 671-678.	2.3	16
52	Broad-spectrum analysis of endocrine disruptors in environmental samples Bunseki Kagaku, 1999, 48, 535-547.	0.1	15
53	Toxicity of Aqueous Fullerene nC _{60} to Activated Sludge: Nitrification Inhibition and Microtox Test. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	13
54	Optimisation of the analysis of anti-influenza drugs in wastewater and surface water. International Journal of Environmental Analytical Chemistry, 2014, 94, 853-862.	1.8	12

#	Article	IF	CITATIONS
55	Evaluation of concentrations of pharmaceuticals detected in sewage influents in Japan by using annual shipping and sales data. Chemosphere, 2015, 138, 770-776.	4.2	11
56	Modeling the fate of a photoproduct of ketoprofen in urban rivers receiving wastewater treatment plant effluent. Science of the Total Environment, 2016, 573, 810-816.	3.9	11
57	Distribution of pharmaceutical and personal care products (PPCPs) in aquatic environment in Hanoi and Metro Manila. Environmental Monitoring and Assessment, 2021, 193, 847.	1.3	11
58	The Effect of Estrogens, River Water, and Treated Wastewater on Vitellogenin Induction of Japanese Medaka ¹ . Journal of the American Water Resources Association, 2009, 45, 22-34.	1.0	9
59	Elevated risk from estrogens in the Yodo River basin (Japan) in winter and ozonation as a management option. Environmental Sciences: Processes and Impacts, 2014, 16, 232.	1.7	9
60	Diurnal patterns of N-nitrosodimethylamine and formaldehyde behaviors in different seasons in surface water influenced by effluent from sewage treatment plants. Journal of Hazardous Materials, 2020, 383, 121155.	6.5	9
61	Quantification of Pharmaceutical Related Biological Activity in Effluents from Wastewater Treatment Plants in UK and Japan. Environmental Science & Technology, 2018, 52, 11848-11856.	4.6	8
62	N-nitrosomorpholine behavior in sewage treatment plants and urban rivers. Water Research, 2019, 163, 114868.	5.3	8
63	Determination of Nonylphenol migrated from Food-contact Plastics Journal of Environmental Chemistry, 2002, 12, 621-625.	0.1	8
64	N-nitrosodimethylamine formation potential (NDMA-FP) of ranitidine remains after chlorination and/or photo-irradiation: Identification of transformation products in combination with NDMA-FP test. Chemosphere, 2021, 267, 129200.	4.2	6
65	Development of Method for Identification of Major Substances Inducing Estrogenic Activity Contained in Sewage and River Waters. Journal of Environmental Chemistry, 2006, 16, 389-401.	0.1	6
66	Influence of Hydraulic Retention Time, Sludge Retention Time, and Ozonation on the Removal of Free and Conjugated Estrogens in Japanese Activated Sludge Treatment Plants. Clean - Soil, Air, Water, 2015, 43, 1289-1294.	0.7	5
67	Contribution of N,N-dimethylformamide to formation of N-nitrosodimethylamine by chloramination in sewage treatment plants and receiving rivers. Water Research, 2021, 191, 116827.	5.3	4
68	Comprehensive Genomic Survey of Antimicrobial-Resistance Bacteria in the Sewage Tank Replacement with Hospital Relocation. Infection and Drug Resistance, 2021, Volume 14, 5563-5574.	1.1	4
69	Influences of activated sludge surface properties on adsorption of aqueous fullerene C60 nanoparticles. International Journal of Environmental Science and Technology, 2017, 14, 1989-1998.	1.8	2
70	De-conjugation Fate of the Conjugated Estrogens in the Raw Wastewater. Proceedings of the Water Environment Federation, 2009, 2009, 590-602.	0.0	1
71	Modeling in-stream attenuation of N-nitrosodimethylamine and formaldehyde during urban river transportation based on seasonal and diurnal variation. Environmental Science and Pollution Research, 2021, 28, 10889-10897.	2.7	1
72	Occurrence and Fate of Pharmaceuticals in Wastewater Systems in Japan. Proceedings of the Water Environment Federation, 2007, 2007, 172-178.	0.0	0

#	Article	IF	CITATIONS
73	Attenuation of Pharmaceuticals and Personal Care Products in a Bypass Channel and River. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2012, 68, III_193-III_203.	0.1	0
74	Investigation of the occurrence of N-nitrosamines and their formation potential in wastewater treatment plants. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2012, 68, III_351-III_358.	0.1	0