List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Path Forward for Biofuels and Biomaterials. Science, 2006, 311, 484-489.	12.6	4,935
2	Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 2014, 344, 1246843.	12.6	2,994
3	Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chemical Reviews, 2021, 121, 1232-1285.	47.7	1,334
4	Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 2004, 20, 131-141.	5.2	961
5	Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3803-3808.	7.1	585
6	From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 2019, 271, 449-461.	9.6	565
7	Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioproducts and Biorefining, 2010, 4, 209-226.	3.7	558
8	lonic Liquid as a Green Solvent for Lignin. Journal of Wood Chemistry and Technology, 2007, 27, 23-33.	1.7	484
9	Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels, 2013, 6, 15.	6.2	468
10	Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy and Environmental Science, 2011, 4, 3154.	30.8	447
11	Pseudo-lignin and pretreatment chemistry. Energy and Environmental Science, 2011, 4, 1306-1310.	30.8	423
12	Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 2009, 94, 1632-1638.	5.8	414
13	The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 2020, 301, 122784.	9.6	396
14	Pretreatment and Lignocellulosic Chemistry. Bioenergy Research, 2012, 5, 1043-1066.	3.9	366
15	<i>Miscanthus</i> : a fastâ€growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 2012, 6, 580-598.	3.7	360
16	Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnology Advances, 2018, 36, 2032-2050.	11.7	346
17	Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 2014, 8, 836-856.	3.7	343
18	Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Current Opinion in Biotechnology, 2014, 27, 150-158.	6.6	342

#	Article	IF	CITATIONS
19	Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 2012, 117, 7-12.	9.6	327
20	Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 2020, 200, 108254.	12.0	323
21	Synthetic Applications of Laccase in Green Chemistry. Advanced Synthesis and Catalysis, 2009, 351, 1187-1209.	4.3	296
22	Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 2008, 99, 1320-1328.	3.3	281
23	Lignin Pyrolysis Components and Upgrading—Technology Review. Bioenergy Research, 2013, 6, 1183-1204.	3.9	280
24	Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Frontiers in Chemistry, 2016, 4, 45.	3.6	279
25	Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydrate Polymers, 2013, 91, 638-645.	10.2	277
26	Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nature Protocols, 2019, 14, 2627-2647.	12.0	272
27	Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20, 2192-2205.	9.0	269
28	The frontiers of energy. Nature Energy, 2016, 1, .	39.5	253
29	Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Applied Sciences (Switzerland), 2020, 10, 4345.	2.5	249
30	High performance green barriers based on nanocellulose. Sustainable Chemical Processes, 2014, 2, .	2.3	246
31	Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry, 2017, 5, 5-11.	5.9	238
32	Structural Characterization and Comparison of Switchgrass Ball-milled Lignin Before and After Dilute Acid Pretreatment. Applied Biochemistry and Biotechnology, 2010, 162, 62-74.	2.9	227
33	Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2011, 5, 215-225.	3.7	224
34	The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2008, 2, 58-73.	3.7	219
35	Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnology and Bioengineering, 2014, 111, 485-492.	3.3	214
36	From wood to fuels: Integrating biofuels and pulp production. Industrial Biotechnology, 2006, 2, 55-65.	0.8	213

#	Article	IF	CITATIONS
37	Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renewable and Sustainable Energy Reviews, 2022, 154, 111822.	16.4	211
38	Facile synthesis of spherical cellulose nanoparticles. Carbohydrate Polymers, 2007, 69, 607-611.	10.2	208
39	Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polymer Degradation and Stability, 2010, 95, 997-1003.	5.8	207
40	Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology, 2010, 101, 7410-7415.	9.6	207
41	NMR Characterization of Pyrolysis Oils from Kraft Lignin. Energy & amp; Fuels, 2011, 25, 2322-2332.	5.1	205
42	A critical review on the analysis of lignin carbohydrate bonds. Green Chemistry, 2019, 21, 1573-1595.	9.0	204
43	From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chemistry, 2016, 18, 5693-5700.	9.0	203
44	High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanoligninâ€Polyvinyl Alcohol Blends. ChemSusChem, 2014, 7, 3513-3520.	6.8	199
45	Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chemistry, 2014, 16, 63-68.	9.0	198
46	Switchgrass as an energy crop for biofuel production: A review of its ligno-cellulosic chemical properties. Energy and Environmental Science, 2010, 3, 1182.	30.8	194
47	The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 2013, 6, 110.	6.2	191
48	Lignin as a UV Light Blocker—A Review. Polymers, 2020, 12, 1134.	4.5	190
49	Kraft Lignin-Based Rigid Polyurethane Foam. Journal of Wood Chemistry and Technology, 2012, 32, 210-224.	1.7	177
50	Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresource Technology, 2013, 130, 372-381.	9.6	177
51	Carbohydrate derivedâ€pseudoâ€ŀignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 2013, 110, 737-753.	3.3	174
52	A review of sugarcane bagasse for secondâ€generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining, 2016, 10, 634-647.	3.7	173
53	Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 2016, 18, 1306-1312.	9.0	172
54	Lipids from heterotrophic microbes: advances in metabolism research. Trends in Biotechnology, 2011, 29, 53-61.	9.3	170

#	Article	IF	CITATIONS
55	Lignin Structural Modifications Resulting from Ethanol Organosolv Treatment of Loblolly Pine. Energy & Fuels, 2010, 24, 683-689.	5.1	169
56	Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 2022, 428, 131928.	12.7	169
57	Copper(II)-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes in Ionic Liquid [bmpy]PF6. Organic Letters, 2005, 7, 3689-3692.	4.6	166
58	4- <i>O</i> -methylation of glucuronic acid in <i>Arabidopsis</i> glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14253-14258.	7.1	164
59	Pretreatment of <i>Miscanthus x giganteus</i> Using the Ethanol Organosolv Process for Ethanol Production. Industrial & amp; Engineering Chemistry Research, 2009, 48, 8328-8334.	3.7	162
60	Effects of Two-Stage Dilute Acid Pretreatment on the Structure and Composition of Lignin and Cellulose in Loblolly Pine. Bioenergy Research, 2008, 1, 205-214.	3.9	161
61	Lignin extraction and upgrading using deep eutectic solvents. Industrial Crops and Products, 2020, 147, 112241.	5.2	159
62	Cu(II)-Catalyzed Selective Aerobic Oxidation of Alcohols under Mild Conditions. Journal of Organic Chemistry, 2006, 71, 7087-7090.	3.2	158
63	Cellulase kinetics as a function of cellulose pretreatment. Metabolic Engineering, 2008, 10, 370-381.	7.0	157
64	Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research, 2010, 345, 965-970.	2.3	153
65	Bioconversion of lignin model compounds with oleaginous Rhodococci. Applied Microbiology and Biotechnology, 2012, 93, 891-900.	3.6	153
66	Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose, 2013, 20, 807-818.	4.9	148
67	Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chemistry, 2015, 17, 4239-4246.	9.0	146
68	Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 2017, 19, 2006-2016.	9.0	145
69	Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass. Biomacromolecules, 2010, 11, 2329-2335.	5.4	143
70	Os <scp>CESA</scp> 9 conservedâ€site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose <scp>DP</scp> and crystallinity in rice. Plant Biotechnology Journal, 2017, 15, 1093-1104.	8.3	143
71	Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy and Fuels, 2020, 4, 4390-4414.	4.9	140
72	The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem, 2015, 8, 275-279.	6.8	139

#	Article	IF	CITATIONS
73	Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances, 2012, 2, 10925.	3.6	138
74	Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nature Biotechnology, 2018, 36, 249-257.	17.5	136
75	Cellulosic biorefineries—unleashing lignin opportunities. Current Opinion in Environmental Sustainability, 2010, 2, 383-393.	6.3	134
76	Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels, Bioproducts and Biorefining, 2018, 12, 83-107.	3.7	133
77	Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass and Bioenergy, 2010, 34, 1885-1895.	5.7	132
78	Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chemistry, 2013, 15, 2070.	9.0	129
79	Structural Characterization of Switchgrass Lignin after Ethanol Organosolv Pretreatment. Energy & Fuels, 2012, 26, 740-745.	5.1	127
80	Perspective on Technical Lignin Fractionation. ACS Sustainable Chemistry and Engineering, 2020, 8, 8086-8101.	6.7	126
81	Cellulose nanowhisker foams by freeze casting. Carbohydrate Polymers, 2012, 88, 789-792.	10.2	125
82	The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Frontiers in Chemistry, 2014, 2, 66.	3.6	124
83	A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydrate Polymers, 2009, 75, 85-89.	10.2	123
84	Fractionation of Organosolv Lignin Using Acetone:Water and Properties of the Obtained Fractions. ACS Sustainable Chemistry and Engineering, 2017, 5, 580-587.	6.7	121
85	Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 2018, 123, 664-674.	8.9	121
86	Systems biology-guided biodesign of consolidated lignin conversion. Green Chemistry, 2016, 18, 5536-5547.	9.0	119
87	Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels, 2013, 6, 71.	6.2	118
88	Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 2015, 17, 2784-2789.	9.0	117
89	Chemical Transformations of Buddleja davidii Lignin during Ethanol Organosolv Pretreatment. Energy & Fuels, 2010, 24, 2723-2732.	5.1	116
90	Influence of Si/Al Ratio of ZSM-5 Zeolite on the Properties of Lignin Pyrolysis Products. ACS Sustainable Chemistry and Engineering, 2013, 1, 316-324.	6.7	116

#	Article	IF	CITATIONS
91	Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 2017, 19, 4939-4955.	9.0	116
92	Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 2019, 105, 349-362.	16.4	116
93	Chemical Structure of Residual Lignin from Kraft Pulp. Journal of Wood Chemistry and Technology, 1996, 16, 347-365.	1.7	114
94	Ethanol organosolv lignin-based rigid polyurethane foam reinforced with cellulose nanowhiskers. RSC Advances, 2012, 2, 3347.	3.6	112
95	Determination of porosity of lignocellulosic biomass before and after pretreatment by using Simons' stain and NMR techniques. Bioresource Technology, 2013, 144, 467-476.	9.6	112
96	Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis. Green Chemistry, 2015, 17, 2406-2417.	9.0	112
97	Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology, 2013, 130, 30-37.	9.6	111
98	A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass. Plant Cell, 2013, 25, 4342-4361.	6.6	109
99	Diol pretreatment to fractionate a reactive lignin in lignocellulosic biomass biorefineries. Green Chemistry, 2019, 21, 2788-2800.	9.0	109
100	Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS Nano, 2021, 15, 3646-3673.	14.6	108
101	Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. Biotechnology for Biofuels, 2012, 5, 38.	6.2	106
102	An Inâ€Đepth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock. ChemSusChem, 2017, 10, 139-150.	6.8	106
103	Selective Aerobic Oxidation of Activated Alcohols into Acids or Aldehydes in Ionic Liquids. Journal of Organic Chemistry, 2007, 72, 7030-7033.	3.2	105
104	NMR a critical tool to study the production of carbon fiber from lignin. Carbon, 2013, 52, 65-73.	10.3	103
105	Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Industrial Crops and Products, 2020, 146, 112144.	5.2	103
106	Increase in 4-Coumaryl Alcohol Units during Lignification in Alfalfa (Medicago sativa) Alters the Extractability and Molecular Weight of Lignin. Journal of Biological Chemistry, 2010, 285, 38961-38968.	3.4	102
107	Vanadium-catalyzed selective aerobic alcohol oxidation in ionic liquid [bmim]PF6. Tetrahedron Letters, 2007, 48, 273-276.	1.4	101
108	Pyrolysis of Kraft Lignin with Additives. Energy & amp; Fuels, 2011, 25, 4662-4668.	5.1	101

#	Article	IF	CITATIONS
109	Biotechnological opportunities with the β-ketoadipate pathway. Trends in Biotechnology, 2012, 30, 627-637.	9.3	101
110	Significance of Lignin S/G Ratio in Biomass Recalcitrance of <i>Populus trichocarpa</i> Variants for Bioethanol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 2162-2168.	6.7	100
111	Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Applied Materials Today, 2021, 24, 101078.	4.3	100
112	Molecular Recognition of a Salmonella Trisaccharide Epitope by Monoclonal Antibody Se155-4. Biochemistry, 1994, 33, 5172-5182.	2.5	99
113	Pyrolysis oils from CO2 precipitated Kraft lignin. Green Chemistry, 2011, 13, 3196.	9.0	99
114	Torrefaction of Loblolly pine. Green Chemistry, 2012, 14, 72-76.	9.0	99
115	Chemical Transformations of Poplar Lignin during Cosolvent Enhanced Lignocellulosic Fractionation Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 8711-8718.	6.7	99
116	Characterization of cellulose nanofibrillation by micro grinding. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	98
117	Biomass Characterization of Buddleja davidii: A Potential Feedstock for Biofuel Production. Journal of Agricultural and Food Chemistry, 2009, 57, 1275-1281.	5.2	97
118	Chemical profiles of switchgrass. Bioresource Technology, 2010, 101, 3253-3257.	9.6	97
119	Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 2019, 21, 245-260.	9.0	97
120	Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnology for Biofuels, 2012, 5, 71.	6.2	96
121	CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydrate Research, 2006, 341, 591-597.	2.3	94
122	Review of NMR Characterization of Pyrolysis Oils. Energy & amp; Fuels, 2016, 30, 6863-6880.	5.1	94
123	Evaluating laccase-facilitated coupling of phenolic acids to high-yield kraft pulps. Enzyme and Microbial Technology, 2002, 30, 855-861.	3.2	93
124	Heteronuclear Single-Quantum Correlation–Nuclear Magnetic Resonance (HSQC–NMR) Fingerprint Analysis of Pyrolysis Oils. Energy & Fuels, 2011, 25, 5791-5801.	5.1	93
125	Characterization of CO ₂ precipitated Kraft lignin to promote its utilization. Green Chemistry, 2010, 12, 31-34.	9.0	92
126	Evaluation of grape stalks as a bioresource. Industrial Crops and Products, 2011, 33, 200-204.	5.2	92

#	Article	IF	CITATIONS
127	A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnology for Biofuels, 2019, 12, 99.	6.2	92
128	HSQC (heteronuclear single quantum coherence) 13C–1H correlation spectra of whole biomass in perdeuterated pyridinium chloride–DMSO system: An effective tool for evaluating pretreatment. Fuel, 2011, 90, 2836-2842.	6.4	91
129	Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution. ACS Omega, 2020, 5, 2865-2877.	3.5	91
130	Effect of Ethanol Organosolv Pretreatment on Enzymatic Hydrolysis of <i>Buddleja davidii</i> Stem Biomass. Industrial & Engineering Chemistry Research, 2010, 49, 1467-1472.	3.7	90
131	Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance. Industrial Biotechnology, 2012, 8, 191-208.	0.8	90
132	Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2014, 2, 772-780.	6.7	90
133	Effects of Lignin Structure on Hydrodeoxygenation Reactivity of Pine Wood Lignin to Valuable Chemicals. ACS Sustainable Chemistry and Engineering, 2017, 5, 1824-1830.	6.7	90
134	Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polymer Degradation and Stability, 2011, 96, 2002-2009.	5.8	88
135	The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar. Biotechnology for Biofuels, 2017, 10, 237.	6.2	88
136	Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Advances, 2012, 2, 3403.	3.6	87
137	Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohydrate Polymers, 2009, 78, 357-360.	10.2	85
138	A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chemistry, 2016, 18, 5015-5024.	9.0	85
139	Characterization of Milled Wood Lignin (MWL) in Loblolly Pine Stem Wood, Residue, and Bark. Journal of Agricultural and Food Chemistry, 2011, 59, 12910-12916.	5.2	84
140	Moisture barrier properties of xylan composite films. Carbohydrate Polymers, 2011, 84, 1371-1377.	10.2	84
141	Two Decades of Laccases: Advancing Sustainability in the Chemical Industry. Chemical Record, 2017, 17, 122-140.	5.8	84
142	Fast Fractionation of Technical Lignins by Organic Cosolvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 6064-6072.	6.7	84
143	Catalytic hydrogenolysis of ethanol organosolv lignin. Holzforschung, 2009, 63, 513-520.	1.9	83
144	Investigation of a Lignin-Based Deep Eutectic Solvent Using <i>p</i> -Hydroxybenzoic Acid for Efficient Woody Biomass Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 12542-12553.	6.7	83

#	Article	IF	CITATIONS
145	NMR Characterization of C3H and HCT Down-Regulated Alfalfa Lignin. Bioenergy Research, 2009, 2, 198-208.	3.9	82
146	Insights of biomass recalcitrance in natural <i>Populus trichocarpa</i> variants for biomass conversion. Green Chemistry, 2017, 19, 5467-5478.	9.0	82
147	Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme and Microbial Technology, 2009, 44, 176-181.	3.2	81
148	Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. ChemSusChem, 2018, 11, 3559-3575.	6.8	81
149	Oxidation and sulfonation of cellulosics. Cellulose, 2008, 15, 489-496.	4.9	80
150	Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnology for Biofuels, 2017, 10, 284.	6.2	80
151	Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation. Bioresource Technology, 2019, 272, 202-208.	9.6	80
152	TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H2O2/HBr/ionic liquid [bmim]PF6 system. Tetrahedron Letters, 2005, 46, 3323-3326.	1.4	79
153	Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system. Energy Conversion and Management, 2019, 180, 60-71.	9.2	79
154	Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresource Technology, 2008, 99, 5051-5057.	9.6	78
155	Modification of High Lignin Content Kraft Pulps with Laccase to Improve Paper Strength Properties. 1. Laccase Treatment in the Presence of Gallic Acid. Biotechnology Progress, 2008, 20, 255-261.	2.6	77
156	The occurrence of tricin and its derivatives in plants. Green Chemistry, 2016, 18, 1439-1454.	9.0	77
157	A biomass pretreatment using cellulose-derived solvent Cyrene. Green Chemistry, 2020, 22, 2862-2872.	9.0	77
158	Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Advanced Materials, 2021, 33, e2005538.	21.0	77
159	Novel nanocellulosic xylan composite film. Composites Part B: Engineering, 2009, 40, 727-730.	12.0	76
160	Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes. Journal of Materials Chemistry A, 2015, 3, 1995-2005.	10.3	76
161	Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization. Bioresource Technology, 2013, 147, 577-584.	9.6	75
162	Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy and Environmental Science, 2013, 6, 2186.	30.8	75

#	Article	IF	CITATIONS
163	Advanced Chemical Design for Efficient Lignin Bioconversion. ACS Sustainable Chemistry and Engineering, 2017, 5, 2215-2223.	6.7	75
164	Surface modification of cellulosic fibers using dielectric-barrier discharge. Carbohydrate Polymers, 2006, 65, 179-184.	10.2	74
165	Investigation into nanocellulosics versus acacia reinforced acrylic films. Composites Part B: Engineering, 2007, 38, 360-366.	12.0	73
166	Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: Effect of extraction conditions on the molecular structure. Polymer Degradation and Stability, 2014, 110, 184-194.	5.8	73
167	Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 4563-4572.	6.7	73
168	A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction. Journal of the American Chemical Society, 2019, 141, 12545-12557.	13.7	73
169	Ligninâ€derived electrochemical energy materials and systems. Biofuels, Bioproducts and Biorefining, 2020, 14, 650-672.	3.7	73
170	Residual lignin studies of laccase-delignified kraft pulps. Enzyme and Microbial Technology, 1998, 23, 422-426.	3.2	72
171	Improvement of paper strength with starch modified clay. Journal of Applied Polymer Science, 2005, 97, 44-50.	2.6	72
172	Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Physical Review E, 2011, 83, 061911.	2.1	72
173	Characterization of Fermentation Residues from the Production of Bio-Ethanol from Lignocellulosic Feedstocks. Journal of Biobased Materials and Bioenergy, 2011, 5, 514-519.	0.3	72
174	Investigation of the fate of poplar lignin during autohydrolysis pretreatment to understand the biomass recalcitrance. RSC Advances, 2013, 3, 5305.	3.6	72
175	Characterization of products from hydrothermal carbonization of pine. Bioresource Technology, 2017, 244, 78-83.	9.6	72
176	Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process. Bioresource Technology, 2016, 207, 361-369.	9.6	71
177	Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing. Composites Part B: Engineering, 2021, 205, 108483.	12.0	71
178	Transforming biorefinery designs with â€~Plug-In Processes of Lignin' to enable economic waste valorization. Nature Communications, 2021, 12, 3912.	12.8	71
179	In Situ Wood Delignification toward Sustainable Applications. Accounts of Materials Research, 2021, 2, 606-620.	11.7	71
180	Co-production of ethanol and cellulose fiber from Southern Pine: A technical and economic assessment. Biomass and Bioenergy, 2008, 32, 1293-1302.	5.7	69

#	Article	IF	CITATIONS
181	Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate Polymers, 2014, 100, 24-30.	10.2	69
182	Lignin Structural Alterations in Thermochemical Pretreatments with Limited Delignification. Bioenergy Research, 2015, 8, 992-1003.	3.9	69
183	Lignin-Based Polyurethanes from Unmodified Kraft Lignin Fractionated by Sequential Precipitation. ACS Applied Polymer Materials, 2019, 1, 1672-1679.	4.4	69
184	Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. Applied Microbiology and Biotechnology, 2001, 55, 699-703.	3.6	68
185	Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds. Bioresource Technology, 2014, 173, 6-10.	9.6	68
186	Isolation and characterization of new lignin streams derived from extractive-ammonia (EA) pretreatment. Green Chemistry, 2016, 18, 4205-4215.	9.0	68
187	Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13816-13824.	7.1	68
188	3D printing of biomass-derived composites: application and characterization approaches. RSC Advances, 2020, 10, 21698-21723.	3.6	67
189	Changes in the Structure of the Cellulose Fiber Wall during Dilute Acid Pretreatment in <i>Populus</i> Studied by ¹ H and ² H NMR. Energy & Fuels, 2010, 24, 5677-5685.	5.1	66
190	Poly(methyl vinyl ether- <i>co</i> -maleic acid)â^Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers. Biomacromolecules, 2010, 11, 2660-2666.	5.4	66
191	Nanoreinforced xylan–cellulose composite foams by freeze-casting. Green Chemistry, 2012, 14, 1864.	9.0	66
192	Impact of Pseudolignin versus Dilute Acid-Pretreated Lignin on Enzymatic Hydrolysis of Cellulose. ACS Sustainable Chemistry and Engineering, 2013, 1, 62-65.	6.7	66
193	Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels, 2010, 1, 85-90.	2.4	65
194	Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure. Materials, 2011, 4, 1985-2002.	2.9	65
195	Production of renewable gasoline from aqueous phase hydrogenation of lignin pyrolysis oil. Fuel, 2013, 103, 1148-1153.	6.4	65
196	Recent Advances in the Application of Functionalized Lignin in Value-Added Polymeric Materials. Polymers, 2020, 12, 2277.	4.5	65
197	Energy Saving in Papermaking through Filler Addition. Industrial & Engineering Chemistry Research, 2008, 47, 8430-8435.	3.7	64
198	Chemical compositions of four switchgrass populations. Biomass and Bioenergy, 2010, 34, 48-53.	5.7	63

12

#	Article	IF	CITATIONS
199	Polymerization of Kraft lignin via ultrasonication for high-molecular-weight applications. Ultrasonics Sonochemistry, 2013, 20, 1463-1469.	8.2	63
200	Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. Biotechnology for Biofuels, 2018, 11, 304.	6.2	63
201	Assessing the Facile Pretreatments of Bagasse for Efficient Enzymatic Conversion and Their Impacts on Structural and Chemical Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 1095-1104.	6.7	63
202	One step thermal conversion of lignin to the gasoline range liquid products by using zeolites as additives. RSC Advances, 2012, 2, 12892.	3.6	62
203	Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnology for Biofuels, 2013, 6, 179.	6.2	62
204	Characterization and Catalytic Transfer Hydrogenolysis of Deep Eutectic Solvent Extracted Sorghum Lignin to Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 10408-10420.	6.7	62
205	Recycling of natural fiber composites: Challenges and opportunities. Resources, Conservation and Recycling, 2022, 177, 105962.	10.8	62
206	Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy and Environmental Science, 2011, 4, 4962.	30.8	61
207	Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose, 2012, 19, 2069-2079.	4.9	61
208	Structural changes of lignins in natural Populus variants during different pretreatments. Bioresource Technology, 2020, 295, 122240.	9.6	61
209	Nuclear Magnetic Resonance Studies. 4. Analysis of Residual Lignin after Kraft Pulping. Industrial & Engineering Chemistry Research, 1998, 37, 3388-3394.	3.7	60
210	Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls. Green Chemistry, 2009, 11, 1762.	9.0	60
211	Surface Characterization of Dilute Acid Pretreated Populus deltoides by ToF-SIMS. Energy & Fuels, 2010, 24, 1347-1357.	5.1	60
212	Inâ€Situ NMR Characterization of Pyrolysis Oil during Accelerated Aging. ChemSusChem, 2012, 5, 1687-1693.	6.8	60
213	Effective biomass fractionation and lignin stabilization using a diol DES system. Chemical Engineering Journal, 2022, 443, 136395.	12.7	60
214	Environmentally friendly synthesis of biaryls: Suzuki reaction of aryl bromides in water at low catalyst loadings. Tetrahedron Letters, 2006, 47, 197-200.	1.4	59
215	Rigid polyurethane foam reinforced with cellulose whiskers: Synthesis and characterization. Nano-Micro Letters, 2010, 2, 89-94.	27.0	59
216	Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy and Environmental Science, 2011, 4, 1516.	30.8	59

#	Article	IF	CITATIONS
217	Elucidating Structural Characteristics of Biomass using Solutionâ€State 2 D NMR with a Mixture of Deuterated Dimethylsulfoxide and Hexamethylphosphoramide. ChemSusChem, 2016, 9, 1090-1095.	6.8	59
218	Tunable solvents for fine chemicals from the biorefinery. Green Chemistry, 2007, 9, 545.	9.0	58
219	Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Advances, 2014, 4, 45136-45142.	3.6	58
220	Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties. ACS Omega, 2019, 4, 20197-20204.	3.5	58
221	Natural deep eutectic solvent mediated extrusion for continuous high-solid pretreatment of lignocellulosic biomass. Green Chemistry, 2020, 22, 6372-6383.	9.0	58
222	A mechanistic study of cellulase adsorption onto lignin. Green Chemistry, 2021, 23, 333-339.	9.0	58
223	Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis. Journal of Analytical and Applied Pyrolysis, 2016, 122, 95-105.	5.5	57
224	Facilitating enzymatic hydrolysis with a novel guaiacol-based deep eutectic solvent pretreatment. Bioresource Technology, 2021, 326, 124696.	9.6	57
225	Evaluating the mechanism of milk protein as an efficient lignin blocker for boosting the enzymatic hydrolysis of lignocellulosic substrates. Green Chemistry, 2022, 24, 5263-5279.	9.0	57
226	Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Advances, 2012, 2, 4951.	3.6	56
227	Understanding Lignin Fractionation and Characterization from Engineered Switchgrass Treated by an Aqueous Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2018, 6, 6612-6623.	6.7	56
228	Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2∫î³-Al2O3 and HZSM-5. Energy Conversion and Management, 2019, 196, 759-767.	9.2	56
229	Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustainable Energy and Fuels, 2019, 3, 2024-2037.	4.9	56
230	High Oxygen Nanocomposite Barrier Films Based on Xylan and Nanocrystalline Cellulose. Nano-Micro Letters, 2010, 2, 235-241.	27.0	55
231	Wet strength development in sisal cellulose fibers by effect of a laccase–TEMPO treatment. Carbohydrate Polymers, 2011, 84, 1384-1390.	10.2	55
232	Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology, 2017, 224, 714-720.	9.6	55
233	Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresource Technology, 2011, 102, 5952-5961.	9.6	54
234	Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure. Biotechnology for Biofuels, 2016, 9, 31.	6.2	54

#	Article	IF	CITATIONS
235	Preparation of aligned porous chitin nanowhisker foams by directional freeze–casting technique. Carbohydrate Polymers, 2014, 112, 277-283.	10.2	53
236	Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069. Biomass and Bioenergy, 2015, 72, 200-205.	5.7	53
237	Challenges of the utilization of wood polymers: how can they be overcome?. Applied Microbiology and Biotechnology, 2011, 91, 1525-1536.	3.6	52
238	Lignin Conversion: Opportunities and Challenges for the Integrated Biorefinery. Industrial Biotechnology, 2016, 12, 161-167.	0.8	52
239	Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing. ACS Applied Bio Materials, 2019, 2, 4557-4570.	4.6	52
240	Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Advances, 2017, 7, 4108-4115.	3.6	51
241	Mechanismâ€Guided Design of Highly Efficient Protein Secretion and Lipid Conversion for Biomanufacturing and Biorefining. Advanced Science, 2019, 6, 1801980.	11.2	51
242	Clean production of 5-hydroxymethylfurfural from cellulose using a hydrothermal/biomass-based carbon catalyst. Journal of Cleaner Production, 2019, 213, 1096-1102.	9.3	51
243	Cross‣inked Nanocellulosic Materials and Their Applications. ChemSusChem, 2020, 13, 78-87.	6.8	51
244	Synthesis of novel water-soluble sulfonated cellulose. Carbohydrate Research, 2010, 345, 284-290.	2.3	50
245	A review of whole cell wall NMR by the direct-dissolution of biomass. Green Chemistry, 2016, 18, 608-621.	9.0	50
246	Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: Study on synergistic effect of alkali metal oxides and HZSM-5. Energy Conversion and Management, 2018, 176, 287-298.	9.2	50
247	Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chemistry, 2018, 20, 921-934.	9.0	49
248	Insights of Ethanol Organosolv Pretreatment on Lignin Properties of <i>Broussonetia papyrifera</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 14767-14773.	6.7	49
249	Catalytic conversion of waste cooking oils for the production of liquid hydrocarbon biofuels using in-situ coating metal oxide on SBA-15 as heterogeneous catalyst. Journal of Analytical and Applied Pyrolysis, 2019, 138, 137-144.	5.5	49
250	The effect of lignin degradation products on the generation of pseudo-lignin during dilute acid pretreatment. Industrial Crops and Products, 2020, 146, 112205.	5.2	49
251	Cascade synthesis of benzofuran derivatives via laccase oxidation–Michael addition. Tetrahedron, 2007, 63, 10958-10962.	1.9	48
252	Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydrate Polymers, 2007, 70, 310-317.	10.2	48

#	Article	IF	CITATIONS
253	A green degumming process of ramie. Industrial Crops and Products, 2018, 120, 131-134.	5.2	48
254	N-Hydroxy Compounds as New Internal Standards for the 31P-NMR Determination of Lignin Hydroxy Functional Groups. Holzforschung, 2001, 55, 283-285.	1.9	47
255	Economic Analysis of an Organosolv Process for Bioethanol Production. BioResources, 2014, 9, .	1.0	47
256	Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. RSC Advances, 2014, 4, 4317-4323.	3.6	47
257	Comparison of changes in cellulose ultrastructure during different pretreatments of poplar. Cellulose, 2014, 21, 2419-2431.	4.9	47
258	Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 2015, 99, 7369-7377.	3.6	47
259	Production of single cell protein from agro-waste using <i>Rhodococcus opacus</i> . Journal of Industrial Microbiology and Biotechnology, 2018, 45, 795-801.	3.0	47
260	Laccase-generated quinones in naphthoquinone synthesis via Diels–Alder reaction. Tetrahedron Letters, 2007, 48, 2983-2987.	1.4	46
261	Design and simulation of an organosolv process for bioethanol production. Biomass Conversion and Biorefinery, 2013, 3, 199-212.	4.6	46
262	Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes. Energy Conversion and Management, 2019, 200, 112088.	9.2	46
263	Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass and Bioenergy, 2019, 120, 350-358.	5.7	46
264	Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye. Frontiers in Chemistry, 2020, 8, 570.	3.6	46
265	Valorization of bamboo biomass using combinatorial pretreatments. Green Chemistry, 2022, 24, 3736-3749.	9.0	46
266	Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. Bioresource Technology, 2022, 360, 127524.	9.6	46
267	Oxygen Delignification Chemistry and Its Impact on Pulp Fibers. Journal of Wood Chemistry and Technology, 2003, 23, 13-29.	1.7	45
268	Copper atalyzed Highly Efficient Aerobic Oxidation of Alcohols under Ambient Conditions. ChemSusChem, 2008, 1, 823-825.	6.8	45
269	The effect of deuteration on the structure of bacterial cellulose. Carbohydrate Research, 2013, 374, 82-88.	2.3	45
270	Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. Journal of Hazardous Materials, 2020, 386, 121970.	12.4	45

#	Article	IF	CITATIONS
271	Transgenic Poplar Designed for Biofuels. Trends in Plant Science, 2020, 25, 881-896.	8.8	45
272	Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Bioresource Technology, 2018, 250, 365-373.	9.6	45
273	Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnology Advances, 2022, 54, 107830.	11.7	44
274	Fuel ethanol production from <i>Eucalyptus globulus</i> wood by autocatalized organosolv pretreatment ethanol–water and SSF. Journal of Chemical Technology and Biotechnology, 2013, 88, 39-48.	3.2	43
275	Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnology for Biofuels, 2017, 10, 252.	6.2	43
276	A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers, 2019, 11, 1387.	4.5	43
277	Tensile properties of 3D-printed wood-filled PLA materials using poplar trees. Applied Materials Today, 2020, 21, 100832.	4.3	43
278	Effects of xylanase pretreatment procedures on nonchlorine bleaching. Enzyme and Microbial Technology, 1994, 16, 492-495.	3.2	42
279	NMR Studies Part 3: Analysis of Lignins from Modern Kraft Pulping Technologies. Holzforschung, 1998, 52, 385-390.	1.9	42
280	Investigations into Laccase-Mediator Delignification of Kraft Pulps. Holzforschung, 1999, 53, 498-502.	1.9	42
281	Rigid Polyurethane Foam/Cellulose Whisker Nanocomposites: Preparation, Characterization, and Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 6904-6911.	0.9	42
282	Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnology for Biofuels, 2014, 7, 50.	6.2	42
283	Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells. Biotechnology for Biofuels, 2017, 10, 266.	6.2	42
284	Linking lignin source with structural and electrochemical properties of lignin-derived carbon materials. RSC Advances, 2018, 8, 38721-38732.	3.6	42
285	Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renewable Energy, 2020, 161, 579-592.	8.9	42
286	Title is missing!. Cellulose, 2000, 7, 369-385.	4.9	41
287	Codesign of Combinatorial Organosolv Pretreatment (COP) and Lignin Nanoparticles (LNPs) in Biorefineries. ACS Sustainable Chemistry and Engineering, 2019, 7, 2634-2647.	6.7	41
288	Increasing the Carbohydrate Output of Bamboo Using a Combinatorial Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 7380-7393.	6.7	41

#	Article	IF	CITATIONS
289	Hydrothermal Pretreatment of Switchgrass. Industrial & Engineering Chemistry Research, 2011, 50, 4225-4230.	3.7	40
290	Characterization of micro fibrillation process of cellulose and mercerized cellulose pulp. RSC Advances, 2015, 5, 63111-63122.	3.6	40
291	Recent Advances in the Synthesis of Deuterium‣abeled Compounds. Asian Journal of Organic Chemistry, 2021, 10, 2473-2485.	2.7	40
292	Investigation of intracranial media ultrasonic monitoring model. Ultrasonics, 2002, 40, 829-833.	3.9	39
293	Structural analysis of acetylated hardwood lignins and their photoyellowing properties. Canadian Journal of Chemistry, 2005, 83, 2132-2139.	1.1	39
294	Piperylene Sulfone:Â A Recyclable Dimethyl Sulfoxide Substitute for Copper-Catalyzed Aerobic Alcohol Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 627-631.	3.7	39
295	Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment. Cellulose, 2018, 25, 4979-4992.	4.9	39
296	Preparation of Highly Reactive Lignin by Ozone Oxidation: Application as Surfactants with Antioxidant and Anti-UV Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 22-28.	6.7	39
297	Promoting Aromatic Hydrocarbon Formation via Catalytic Pyrolysis of Polycarbonate Wastes over Fe- and Ce-Loaded Aluminum Oxide Catalysts. Environmental Science & Technology, 2020, 54, 8390-8400.	10.0	39
298	Highly selective hydrogenation of phenol to cyclohexanone over a Pd-loaded N-doped carbon catalyst derived from chitosan. Journal of Colloid and Interface Science, 2022, 605, 82-90.	9.4	39
299	Nitrobenzene valence bond structures: evidence in support of through-resonance from oxygen-17 shieldings. Journal of the American Chemical Society, 1982, 104, 6475-6476.	13.7	38
300	Grafting of acrylamide onto cellulosic fibers via dielectric-barrier discharge. European Polymer Journal, 2004, 40, 477-482.	5.4	38
301	One-pot synthesis of 1,4-naphthoquinones and related structures with laccase. Green Chemistry, 2007, 9, 475.	9.0	38
302	Revealing the Molecular Structural Transformation of Hardwood and Softwood in Dilute Acid Flowthrough Pretreatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 6618-6628.	6.7	38
303	Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydrate Polymers, 2018, 195, 515-524.	10.2	38
304	Modified alkaline peroxide pretreatment: An efficient path forward for bioethanol production from bamboo. Energy Conversion and Management, 2020, 224, 113365.	9.2	38
305	Fluorescence Enhancement of Lignin-Based Carbon Quantum Dots by Concentration-Dependent and Electron-Donating Substituent Synergy and Their Cell Imaging Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 61565-61577.	8.0	37
306	Cocatalytic Enzyme System for the Michael Addition Reaction of inâ€situâ€Generated <i>ortho</i> â€Quinones. European Journal of Organic Chemistry, 2009, 2009, 358-363.	2.4	36

#	Article	IF	CITATIONS
307	³¹ P-NMR analysis of bio-oils obtained from the pyrolysis of biomass. Biofuels, 2010, 1, 839-845.	2.4	36
308	3D Chemical Image using TOFâ€SIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass. Angewandte Chemie - International Edition, 2012, 51, 12005-12008.	13.8	36
309	Characteristics of Lignin Fractions from Dilute Acid Pretreated Switchgrass and Their Effect on Cellobiohydrolase from Trichoderma longibrachiatum. Frontiers in Energy Research, 2018, 6, .	2.3	36
310	Biomimetic composite scaffold from an <i>in situ</i> hydroxyapatite coating on cellulose nanocrystals. RSC Advances, 2019, 9, 5786-5793.	3.6	36
311	Valorisation of technical lignin in rigid polyurethane foam: a critical evaluation on trends, guidelines and future perspectives. Green Chemistry, 2021, 23, 8725-8753.	9.0	36
312	Amino acid modified cellulose whiskers. RSC Advances, 2011, 1, 1695.	3.6	35
313	Structural Transformation of Isolated Poplar and Switchgrass Lignins during Dilute Acid Treatment. ACS Sustainable Chemistry and Engineering, 2015, 3, 2203-2210.	6.7	35
314	Elucidating the Structural Changes to <i>Populus</i> Lignin during Consolidated Bioprocessing with <i>Clostridium thermocellum</i> . ACS Sustainable Chemistry and Engineering, 2017, 5, 7486-7491.	6.7	35
315	Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. Communications Biology, 2019, 2, 22.	4.4	35
316	Catalytic degradation of waste rubbers and plastics over zeolites to produce aromatic hydrocarbons. Journal of Cleaner Production, 2021, 309, 127469.	9.3	35
317	Functional Analysis of Cellulose Synthase CesA4 and CesA6 Genes in Switchgrass (Panicum virgatum) by Overexpression and RNAi-Mediated Gene Silencing. Frontiers in Plant Science, 2018, 9, 1114.	3.6	34
318	Cellulolytic enzyme-aided extraction of hemicellulose from switchgrass and its characteristics. Green Chemistry, 2019, 21, 3902-3910.	9.0	34
319	The Effects of Oxidative Alkaline Extraction Stages After Laccase _{HBT} and Laccase _{NHAA} Treatments-An NMR Study of Residual Lignins. Journal of Wood Chemistry and Technology, 2000, 20, 169-184.	1.7	33
320	Variations in Cellulosic Ultrastructure of Poplar. Bioenergy Research, 2009, 2, 193-197.	3.9	33
321	Ultrasound-promoted synthesis of nitriles from aldoximes under ambient conditions. Tetrahedron Letters, 2010, 51, 4479-4481.	1.4	33
322	Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass. Green Chemistry, 2017, 19, 2275-2285.	9.0	33
323	Hybrid Catalytic Biorefining of Hardwood Biomass to Methylated Furans and Depolymerized Technical Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 10587-10594.	6.7	33
324	Nacre-inspired hemicelluloses paper with fire retardant and gas barrier properties by self-assembly with bentonite nanosheets. Carbohydrate Polymers, 2019, 225, 115219.	10.2	33

#	Article	IF	CITATIONS
325	Enhancing the multi-functional properties of renewable lignin carbon fibers <i>via</i> defining the structure–property relationship using different biomass feedstocks. Green Chemistry, 2021, 23, 3725-3739.	9.0	33
326	Enzymatic Biobleaching of Two Recalcitrant Paper Dyes with Horseradish and Soybean Peroxidase. Biotechnology Letters, 2005, 27, 753-758.	2.2	32
327	Viewpoint: Chemistry for a Sustainable Future. Environmental Science & Technology, 2007, 41, 4840-4846.	10.0	32
328	Compositional Characterization and Pyrolysis of Loblolly Pine and Douglas-fir Bark. Bioenergy Research, 2013, 6, 24-34.	3.9	32
329	Down-Regulation of KORRIGAN-Like Endo-β-1,4-Glucanase Genes Impacts Carbon Partitioning, Mycorrhizal Colonization and Biomass Production in Populus. Frontiers in Plant Science, 2016, 7, 1455.	3.6	32
330	Conversion of lignin into value-added materials and chemicals via laccase-assisted copolymerization. Applied Microbiology and Biotechnology, 2016, 100, 8685-8691.	3.6	32
331	Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydrate Polymers, 2019, 222, 115036.	10.2	32
332	Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. Bioresource Technology, 2019, 273, 538-544.	9.6	32
333	³¹ P NMR Chemical Shifts of Solvents and Products Impurities in Biomass Pretreatments. ACS Sustainable Chemistry and Engineering, 2018, 6, 1265-1270.	6.7	32
334	A combination of deep eutectic solvent and ethanol pretreatment for synergistic delignification and enhanced enzymatic hydrolysis for biorefinary process. Bioresource Technology, 2022, 350, 126885.	9.6	32
335	Investigation of Laccase/N-Hydroxybenzotriazole Delignification of Kraft Pulp. Journal of Wood Chemistry and Technology, 1998, 18, 403-416.	1.7	31
336	Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis. Phytochemistry, 2015, 112, 170-178.	2.9	31
337	A New Calmodulin-Binding Protein Expresses in the Context of Secondary Cell Wall Biosynthesis and Impacts Biomass Properties in Populus. Frontiers in Plant Science, 2018, 9, 1669.	3.6	31
338	Catalytic conversion of rubber wastes to produce aromatic hydrocarbons over USY zeolites: Effect of SiO2/Al2O3 mole ratio. Energy Conversion and Management, 2019, 197, 111857.	9.2	31
339	Solid-State Selective ¹³ C Excitation and Spin Diffusion NMR To Resolve Spatial Dimensions in Plant Cell Walls. Journal of Agricultural and Food Chemistry, 2012, 60, 1419-1427.	5.2	30
340	Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process. Fuel, 2017, 206, 494-503.	6.4	30
341	Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnology for Biofuels, 2017, 10, 12.	6.2	30
342	Impact of hydration and temperature history on the structure and dynamics of lignin. Green Chemistry, 2018, 20, 1602-1611.	9.0	30

#	Article	IF	CITATIONS
343	Utilization of deep eutectic solvent as a degumming protocol for Apocynum venetum bast. Cellulose, 2019, 26, 8047-8057.	4.9	30
344	Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance. Carbohydrate Polymers, 2021, 253, 117253.	10.2	30
345	Heterogeneous Diels–Alder tandem catalysis for converting cellulose and polyethylene into BTX. Journal of Hazardous Materials, 2021, 414, 125418.	12.4	30
346	Imaging cellulose fibre interfaces with fluorescence microscopy and resonance energy transfer. Carbohydrate Polymers, 2007, 69, 799-804.	10.2	29
347	SANS study of cellulose extracted from switchgrass. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1189-1193.	2.5	29
348	Preparation of Starchâ^'Fatty Acid Modified Clay and Its Application in Packaging Papers. Industrial & Engineering Chemistry Research, 2011, 50, 5628-5633.	3.7	29
349	Comparative studies on hydrothermal pretreatment and enzymatic saccharification of leaves and internodes of alamo switchgrass. Bioresource Technology, 2011, 102, 7224-7228.	9.6	29
350	Pyrolysis Oil-Based Lipid Production as Biodiesel Feedstock by Rhodococcus opacus. Applied Biochemistry and Biotechnology, 2015, 175, 1234-1246.	2.9	29
351	Understanding Multiscale Structural Changes During Dilute Acid Pretreatment of Switchgrass and Poplar. ACS Sustainable Chemistry and Engineering, 2017, 5, 426-435.	6.7	29
352	A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment. Biotechnology for Biofuels, 2018, 11, 96.	6.2	29
353	Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16776-16781.	7.1	29
354	Nanoscale FTIR and Mechanical Mapping of Plant Cell Walls for Understanding Biomass Deconstruction. ACS Sustainable Chemistry and Engineering, 2022, 10, 3016-3026.	6.7	29
355	Improving Laccaseâ€Facilitated Grafting of 4â€Hydroxybenzoic Acid to Highâ€Kappa Kraft Pulps. Journal of Wood Chemistry and Technology, 2005, 24, 69-81.	1.7	28
356	PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynthesis and composition in Populus. BMC Plant Biology, 2019, 19, 486.	3.6	28
357	Maximizing enzymatic hydrolysis efficiency of bamboo with a mild ethanol-assistant alkaline peroxide pretreatment. Bioresource Technology, 2020, 299, 122568.	9.6	28
358	Emerging Strategies for Modifying Lignin Chemistry to Enhance Biological Lignin Valorization. ChemSusChem, 2020, 13, 5423-5432.	6.8	28
359	Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. Biotechnology for Biofuels, 2021, 14, 11.	6.2	28
360	Investigation of the effect of lignin/pseudo-lignin on enzymatic hydrolysis by Quartz Crystal Microbalance. Industrial Crops and Products, 2020, 157, 112927.	5.2	28

#	Article	IF	CITATIONS
361	Biobleaching chemistry of laccase-mediator systems on high-lignin-content kraft pulps. Canadian Journal of Chemistry, 2004, 82, 344-352.	1.1	27
362	Analysis of the topochemical effects of dielectric-barrier discharge on cellulosic fibers. Cellulose, 2005, 12, 185-196.	4.9	27
363	Preparation of superabsorbent cellulosic hydrogels. Carbohydrate Polymers, 2012, 87, 1410-1418.	10.2	27
364	Study on the modification of bleached eucalyptus kraft pulp using birch xylan. Carbohydrate Polymers, 2012, 88, 719-725.	10.2	27
365	Modification of old corrugated container pulp with laccase and laccase–mediator system. Bioresource Technology, 2012, 110, 297-301.	9.6	27
366	Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose. Materialia, 2018, 4, 237-246.	2.7	27
367	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> . Sustainable Energy and Fuels, 2019, 3, 195-207.	4.9	27
368	Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin. Bioresource Technology, 2021, 323, 124593.	9.6	27
369	Phosphitylation and quantitative 31P NMR analysis of partially substituted biodiesel glycerols. Fuel, 2009, 88, 1793-1797.	6.4	26
370	Rapid Determination of Lignin Content via Direct Dissolution and ¹ H NMR Analysis of Plant Cell Walls. ChemSusChem, 2010, 3, 1285-1289.	6.8	26
371	Freeze-casting of cellulose nanowhisker foams prepared from a water-dimethylsulfoxide (DMSO) binary mixture at low DMSO concentrations. RSC Advances, 2013, 3, 19272.	3.6	26
372	Extraction of Hemicellulose from Loblolly Pine Woodchips and Subsequent Kraft Pulping. Industrial & Engineering Chemistry Research, 2013, 52, 1743-1749.	3.7	26
373	Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. Biotechnology for Biofuels, 2017, 10, 311.	6.2	26
374	The Kismet of Residual During LMS Delignification of High-Kappa Kraft Pulps. Holzforschung, 2000, 54, 647-653.	1.9	25
375	Cross-Polarization/Magic Angle Spinning (CP/MAS) ¹³ C Nuclear Magnetic Resonance (NMR) Analysis of Chars from Alkaline-Treated Pyrolyzed Softwood. Energy & Fuels, 2009, 23, 498-501.	5.1	25
376	Biodiesel from grease interceptor to gas tank. Energy Science and Engineering, 2013, 1, 42-52.	4.0	25
377	Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 85-89.	1.8	25
378	Physiochemical Characterization of Lignocellulosic Biomass Dissolution by Flowthrough Pretreatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 219-227.	6.7	25

#	Article	IF	CITATIONS
379	Adsorption of cellobiohydrolases I onto lignin fractions from dilute acid pretreated Broussonetia papyrifera. Bioresource Technology, 2017, 244, 957-962.	9.6	25
380	Chitosan-based layered carbon materials prepared via ionic-liquid-assisted hydrothermal carbonization and their performance study. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 231-243.	5.3	25
381	The effect of switchgrass plant cell wall properties on its deconstruction by thermochemical pretreatments coupled with fungal enzymatic hydrolysis or <i>Clostridium thermocellum</i> consolidated bioprocessing. Green Chemistry, 2020, 22, 7924-7945.	9.0	25
382	Laccase-Mediator Biobleaching Applied to a Direct Yellow Dyed Paper. Biotechnology Progress, 2004, 20, 1893-1896.	2.6	24
383	Correlation between anatomical characteristics of ethanol organosolv pretreated <i>Buddleja davidii</i> and its enzymatic conversion to glucose. Biotechnology and Bioengineering, 2010, 107, 795-801.	3.3	24
384	Biomass Characterization of Morphological Portions of Alamo Switchgrass. Journal of Agricultural and Food Chemistry, 2011, 59, 7765-7772.	5.2	24
385	19F NMR spectroscopy for the quantitative analysis of carbonyl groups in bio-oils. RSC Advances, 2014, 4, 17743.	3.6	24
386	Editorial overview: Energy Biotechnology. Current Opinion in Biotechnology, 2014, 27, v-vi.	6.6	24
387	A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus. Journal of Biotechnology & Biomaterials, 2017, 07, .	0.3	24
388	One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. Bioresource Technology, 2019, 288, 121500.	9.6	24
389	Recent advances in lignin-based polyurethanes. Tappi Journal, 2017, 16, 203-207.	0.5	24
390	Rapid Quantitative Analytical Tool for Characterizing the Preparation of Biodiesel. Journal of Physical Chemistry A, 2010, 114, 3883-3887.	2.5	23
391	Chemical characterization and water content determination of bio-oils obtained from various biomass species using 31P NMR spectroscopy. Biofuels, 2012, 3, 123-128.	2.4	23
392	How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars. Biotechnology for Biofuels, 2015, 8, 209.	6.2	23
393	The Nature of Hololignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 957-964.	6.7	23
394	Pyrolytic Behavior of Major Biomass Components in Waste Biomass. Polymers, 2019, 11, 324.	4.5	23
395	Cross-linked poly(methyl vinyl ether-co-maleic acid)/poly(ethylene glycol)/nanocellulosics foams via directional freezing. Carbohydrate Polymers, 2019, 213, 346-351.	10.2	23
396	Supercritical water co-liquefaction of LLDPE and PP into oil: properties and synergy. Sustainable Energy and Fuels, 2021, 5, 575-583.	4.9	23

#	Article	IF	CITATIONS
397	Polymer clay self-assembly complexes on paper. Journal of Applied Polymer Science, 2007, 105, 1987-1992.	2.6	22
398	13C cell wall enrichment and ionic liquid NMR analysis: progress towards a high-throughput detailed chemical analysis of the whole plant cell wall. Analyst, The, 2012, 137, 3904.	3.5	22
399	A Novel Oxidative Pretreatment of Loblolly Pine, Sweetgum, and Miscanthus by Ozone. Journal of Wood Chemistry and Technology, 2012, 32, 361-375.	1.7	22
400	Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass. Frontiers in Energy Research, 2014, 1, .	2.3	22
401	Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes. Biomass and Bioenergy, 2016, 94, 146-154.	5.7	22
402	Overexpression of a Domain of Unknown Function 266-containing protein results in high cellulose content, reduced recalcitrance, and enhanced plant growth in the bioenergy crop Populus. Biotechnology for Biofuels, 2017, 10, 74.	6.2	22
403	Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express, 2017, 7, 185.	3.0	22
404	Hydrogenation of Phenol to Cyclohexanone over Bifunctional Pd/C-Heteropoly Acid Catalyst in the Liquid Phase. Catalysis Letters, 2019, 149, 2383-2389.	2.6	22
405	Preparation and characterization of nanocellulose–polyvinyl alcohol multilayer film by layer-by-layer method. Cellulose, 2019, 26, 4787-4798.	4.9	22
406	Mechanistic Insight into Lignin Slow Pyrolysis by Linking Pyrolysis Chemistry and Carbon Material Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 15843-15854.	6.7	22
407	NMR Analysis of Oxidative Alkaline Extraction Stage Lignins. Holzforschung, 1999, 53, 623-631.	1.9	21
408	Analytical pyrolysis study of biodelignification of cloned Eucalyptus globulus (EG) clone and Pinus pinaster Aiton kraft pulp and residual lignins. Journal of Analytical and Applied Pyrolysis, 2009, 85, 19-29.	5.5	21
409	Hemicellulose–Cellulose Composites Reveal Differences in Cellulose Organization after Dilute Acid Pretreatment. Biomacromolecules, 2019, 20, 893-903.	5.4	21
410	Conversion of Loblolly pine biomass residues to bio-oil in a two-step process: Fast pyrolysis in the presence of zeolite and catalytic hydrogenation. Industrial Crops and Products, 2020, 148, 112318.	5.2	21
411	Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: Comparison of different catalysts. Fuel, 2020, 278, 118322.	6.4	21
412	THF co-solvent pretreatment prevents lignin redeposition from interfering with enzymes yielding prolonged cellulase activity. Biotechnology for Biofuels, 2021, 14, 63.	6.2	21
413	Promoting Diels-Alder reactions to produce bio-BTX: Co-aromatization of textile waste and plastic waste over USY zeolite. Journal of Cleaner Production, 2021, 314, 127966.	9.3	21
414	Filler Modification with Polysaccharides or Their Derivatives for Improved Paper Properties. Journal of Biobased Materials and Bioenergy, 2009, 3, 321-334.	0.3	21

#	Article	IF	CITATIONS
415	Biofuel production from Jerusalem artichoke tuber inulins: a review. Biofuel Research Journal, 2017, 4, 587-599.	13.3	21
416	Effects of Biomass Accessibility and Klason Lignin Contents during Consolidated Bioprocessing in <i>Populus trichocarpa</i> . ACS Sustainable Chemistry and Engineering, 2017, 5, 5075-5081.	6.7	20
417	Catalytic Conversion of Bamboo Sawdust over ZrO ₂ –CeO ₂ /γ-Al ₂ O ₃ to Produce Ketonic Hydrocarbon Precursors and Furans. ACS Sustainable Chemistry and Engineering, 2018, 6, 13797-13806.	6.7	20
418	Understanding the influences of different pretreatments on recalcitrance of Populus natural variants. Bioresource Technology, 2018, 265, 75-81.	9.6	20
419	Hemicellulose characterization of deuterated switchgrass. Bioresource Technology, 2018, 269, 567-570.	9.6	20
420	Nonâ€ S olvent Fractionation of Lignin Enhances Carbon Fiber Performance. ChemSusChem, 2019, 12, 3249-3256.	6.8	20
421	Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Current Opinion in Biotechnology, 2019, 56, 250-257.	6.6	20
422	Preparation and Characterization of Various Kraft Lignins and Impact on Their Pyrolysis Behaviors. Industrial & Engineering Chemistry Research, 2020, 59, 3310-3320.	3.7	20
423	Elucidating the mechanisms of enhanced lignin bioconversion by an alkali sterilization strategy. Green Chemistry, 2021, 23, 4697-4709.	9.0	20
424	Preparation, Properties, and Application of Lignocellulosicâ€Based Fluorescent Carbon Dots. ChemSusChem, 2022, 15, e202102486.	6.8	20
425	Revealing the mechanism of lignin re-polymerization inhibitor in acidic pretreatment and its impact on enzymatic hydrolysis. Industrial Crops and Products, 2022, 179, 114631.	5.2	20
426	The bamboo delignification saturation point in alkaline hydrogen peroxide pretreatment and its association with enzymatic hydrolysis. Bioresource Technology, 2022, 359, 127462.	9.6	20
427	Modification of High-Lignin Kraft Pulps with Laccase. Part 2. Xylanase-Enhanced Strength Benefits. Biotechnology Progress, 2008, 21, 1302-1306.	2.6	19
428	Nanometrology of delignified <i>Populus</i> using mode synthesizing atomic force microscopy. Nanotechnology, 2011, 22, 465702.	2.6	19
429	Deuterium incorporation in biomass cell wall components by NMR analysis. Analyst, The, 2012, 137, 1090.	3.5	19
430	Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate. Bioresource Technology, 2013, 147, 212-220.	9.6	19
431	Correlations of the physicochemical properties of organosolv lignins from <i>Broussonetia papyrifera</i> with their antioxidant activities. Sustainable Energy and Fuels, 2020, 4, 5114-5119.	4.9	19
432	Isolation and characterization of lignocellulosic nanofibers from four kinds of organosolv-fractionated lignocellulosic materials. Wood Science and Technology, 2020, 54, 503-517.	3.2	19

#	Article	IF	CITATIONS
433	Polyethylene upcycling to fuels: Narrowing the carbon number distribution in n-alkanes by tandem hydropyrolysis/hydrocracking. Chemical Engineering Journal, 2022, 444, 136360.	12.7	19
434	Oxygen Delignification of High-Yield Kraft Pulp. Part I: Structural Properties of Residual Lignins. Holzforschung, 1999, 53, 416-422.	1.9	18
435	Laccase treatment of recycled blue dyed paper: physical properties and fiber charge. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1103-1108.	3.0	18
436	Direct analysis of cellulose in poplar stem by matrixâ€assisted laser desorption/ionization imaging mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 3230-3236.	1.5	18
437	Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation. Carbohydrate Polymers, 2014, 111, 514-523.	10.2	18
438	Synthesis of a co-cross-linked nanocomposite hydrogels from poly(methyl vinyl ether-co-maleic) Tj ETQq0 0 0 rgB	T /Oyerloc 4.9	k 10 Tf 50 54 18
439	Effect of D2O on Growth Properties and Chemical Structure of Annual Ryegrass (Lolium) Tj ETQq1 1 0.784314 rg	BT /Overla	ock 10 Tf 5 $^{\circ}$
440	Laccase-mediated synthesis of lignin-core hyperbranched copolymers. Applied Microbiology and Biotechnology, 2017, 101, 6343-6353.	3.6	18
441	Laccase-mediated functionalization of chitosan with 4-hexyloxyphenol enhances antioxidant and hydrophobic properties of copolymer. Journal of Biotechnology, 2018, 269, 8-15.	3.8	18
442	Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock. Bioresource Technology, 2019, 289, 121589.	9.6	18
443	Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnology for Biofuels, 2019, 12, 108.	6.2	18
444	A Facile Degumming Method of Kenaf Fibers Using Deep Eutectic Solution. Journal of Natural Fibers, 2022, 19, 1115-1125.	3.1	18
445	Synthesis and Characterization of Lignin-grafted-poly(Îμ-caprolactone) from Different Biomass Sources. New Biotechnology, 2021, 60, 189-199.	4.4	18
446	Double bonus: surfactant-assisted biomass pelleting benefits both the pelleting process and subsequent enzymatic saccharification of the pretreated pellets. Green Chemistry, 2021, 23, 1050-1061.	9.0	18
447	Wood-reinforced composites by stereolithography with the stress whitening behavior. Materials and Design, 2021, 206, 109773.	7.0	18
448	Solvent-free production of carbon materials with developed pore structure from biomass for high-performance supercapacitors. Industrial Crops and Products, 2020, 150, 112384.	5.2	18
449	Investigation of the photo-oxidative chemistry of acetylated softwood lignin. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 215-221.	3.9	17
450	Influence of Kraft Pulping on Carboxylate Content of Softwood Kraft Pulps. Industrial & Engineering Chemistry Research, 2006, 45, 4509-4516.	3.7	17

#	Article	IF	CITATIONS
451	A Novel Method for Enhanced Recovery of Lignin from Aqueous Process Streams. Journal of Wood Chemistry and Technology, 2007, 27, 219-224.	1.7	17
452	A novel FRET approach for in situ investigation of cellulase–cellulose interaction. Analytical and Bioanalytical Chemistry, 2010, 398, 1257-1262.	3.7	17
453	Dilute H ₂ SO ₄ and SO ₂ pretreatments of Loblolly pine wood residue for bioethanol production. Industrial Biotechnology, 2012, 8, 22-30.	0.8	17
454	Neutron Technologies for Bioenergy Research. Industrial Biotechnology, 2012, 8, 209-216.	0.8	17
455	Effects of feeding fiber-fermenting bacteria to pigs on nutrient digestion, fecal output, and plasma energy metabolites1,2. Journal of Animal Science, 2012, 90, 4020-4027.	0.5	17
456	Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix. Green Chemistry, 2014, 16, 3458.	9.0	17
457	Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). Cellulose, 2015, 22, 1469-1484.	4.9	17
458	Effect of solvent fractionation pretreatment on energy consumption of cellulose nanofabrication from switchgrass. Journal of Materials Science, 2019, 54, 8010-8022.	3.7	17
459	Detailed Oil Compositional Analysis Enables Evaluation of Impact of Temperature and Biomass-to-Catalyst Ratio on ex Situ Catalytic Fast Pyrolysis of Pine Vapors over ZSM-5. ACS Sustainable Chemistry and Engineering, 2020, 8, 1762-1773.	6.7	17
460	Arabidopsis Câ€ŧerminal binding protein ANGUSTIFOLIA modulates transcriptional coâ€regulation of <i>MYB46</i> and <i>WRKY33</i> . New Phytologist, 2020, 228, 1627-1639.	7.3	17
461	Targeting hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon. Biotechnology for Biofuels, 2021, 14, 50.	6.2	17
462	Enhanced medium chain length-polyhydroxyalkanoate production by co-fermentation of lignin and holocellulose hydrolysates. Green Chemistry, 2021, 23, 8226-8237.	9.0	17
463	Synthesis of benzylidenated hexopyranosides in ionic liquids. Carbohydrate Research, 2005, 340, 2812-2815.	2.3	16
464	Near-Infrared Spectroscopy and Chemometric Analysis for Determining Oxygen Delignification Yield. Journal of Wood Chemistry and Technology, 2008, 28, 122-136.	1.7	16
465	Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicology, 2015, 24, 2156-2174.	2.4	16
466	Topochemical Understanding of Lignin Distribution During Hydrothermal Flowthrough Pretreatment. ChemistrySelect, 2018, 3, 9348-9352.	1.5	16
467	Preserving Aryl Ether Linkages and Higher Yields of Isolated Lignin through Biomass Fibrillation. ACS Sustainable Chemistry and Engineering, 2020, 8, 34-37.	6.7	16
468	Effects of CELF Pretreatment Severity on Lignin Structure and the Lignin-Based Polyurethane Properties. Frontiers in Energy Research, 2020, 8, .	2.3	16

#	Article	IF	CITATIONS
469	Elucidating the Effects of Laccase on the Physical Properties of High-Kappa Kraft Pulps. Progress in Biotechnology, 2002, , 165-172.	0.2	15
470	Elucidating carboxylic acid profiles for extended oxygen delignification of high-kappa softwood kraft pulps. Holzforschung, 2006, 60, 123-129.	1.9	15
471	Lignocellulosic fiber charge enhancement by catalytic oxidation during oxygen delignification. Journal of Colloid and Interface Science, 2007, 306, 248-254.	9.4	15
472	IDENTIFICATION OF MATERIAL PROPERTIES OF COMPOSITE MATERIALS. Aviation, 2009, 13, 109-115.	0.9	15
473	Production of deuterated switchgrass by hydroponic cultivation. Planta, 2015, 242, 215-222.	3.2	15
474	Effect of Autohydrolysis Pretreatment Conditions on Sugarcane Bagasse Structures and Product Distribution Resulting from Pyrolysis. Energy Technology, 2018, 6, 640-648.	3.8	15
475	Editorial: Advancements in Biomass Recalcitrance: The Use of Lignin for the Production of Fuels and Chemicals. Frontiers in Energy Research, 2018, 6, .	2.3	15
476	An alkali-free method to manufacture ramie fiber. Textile Reseach Journal, 2019, 89, 3653-3659.	2.2	15
477	One-step transformation of biomass to fuel precursors using a bi-functional combination of Pd/C and water tolerant Lewis acid. Fuel, 2020, 277, 118200.	6.4	15
478	Effects of different pelleting technologies and parameters on pretreatment and enzymatic saccharification of lignocellulosic biomass. Renewable Energy, 2021, 179, 2147-2157.	8.9	15
479	Preparation and characterization of aminated co-solvent enhanced lignocellulosic fractionation lignin as a renewable building block for the synthesis of non-isocyanate polyurethanes. Industrial Crops and Products, 2022, 178, 114579.	5.2	15
480	Assessing the availability of two bamboo species for fermentable sugars by alkaline hydrogen peroxide pretreatment. Bioresource Technology, 2022, 349, 126854.	9.6	15
481	Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy. Analyst, The, 2012, 137, 1319.	3.5	14
482	Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 2014, 4, 12148.	3.6	14
483	Advances in understanding the surface chemistry of lignocellulosic biomass via timeâ€ofâ€flight secondary ion mass spectrometry. Energy Science and Engineering, 2017, 5, 5-20.	4.0	14
484	³¹ P NMR Characterization of Tricin and Its Structurally Similar Flavonoids. ChemistrySelect, 2017, 2, 3557-3561.	1.5	14
485	Characterization of Whole Biomasses in Pyridine Based Ionic Liquid at Low Temperature by 31P NMR: An Approach to Quantitatively Measure Hydroxyl Groups in Biomass As Their Original Structures. Frontiers in Energy Research, 2018, 6, .	2.3	14
486	Robust galactomannan/graphene oxide film with ultra-flexible, gas barrier and self-clean properties. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105780.	7.6	14

#	Article	IF	CITATIONS
487	Recycled Cardboard Containers as a Low Energy Source for Cellulose Nanofibrils and Their Use in Poly(<scp>l</scp> -lactide) Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 13460-13470.	6.7	14
488	Opportunities and challenges for flow-through hydrothermal pretreatment in advanced biorefineries. Bioresource Technology, 2022, 343, 126061.	9.6	14
489	Use of a Lewis acid, a BrÃnsted acid, and their binary mixtures for the hydrothermal liquefaction of lignocellulose. Fuel, 2021, 304, 121398.	6.4	14
490	Chemical modification of lignin-rich paper. Nordic Pulp and Paper Research Journal, 1998, 13, 132-142.	0.7	14
491	Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion. Bioresource Technology, 2022, 347, 126367.	9.6	14
492	Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process. Applied Energy, 2022, 323, 119629.	10.1	14
493	A synthesis of hirsutene: a simple route via β-enolization. Canadian Journal of Chemistry, 1984, 62, 2521-2525.	1.1	13
494	Characterization of lignocellulosic-poly(lactic acid) reinforced composites. Journal of Applied Polymer Science, 2006, 99, 1346-1349.	2.6	13
495	Hydrodeoxygenation by deuterium gas – a powerful way to provide insight into the reaction mechanisms. Physical Chemistry Chemical Physics, 2013, 15, 19138.	2.8	13
496	Lignin Bioproducts to Enable Biofuels. Biofuels, Bioproducts and Biorefining, 2015, 9, 447-449.	3.7	13
497	Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	3.1	13
498	Enhancing Enzyme-Mediated Hydrolysis of Mechanical Pulps by Deacetylation and Delignification. ACS Sustainable Chemistry and Engineering, 2020, 8, 5847-5855.	6.7	13
499	Phototunable Lignin Plastics to Enable Recyclability. ChemSusChem, 2021, 14, 4260-4269.	6.8	13
500	Lignin carbon fiber: The path for quality. Tappi Journal, 2017, 16, 107-108.	0.5	13
501	Toward a Fundamental Understanding of the Role of Lignin in the Biorefinery Process. Frontiers in Energy Research, 2022, 9, .	2.3	13
502	Brightness Reversion of Mechanical Pulps Part XIII: Photoinduced Degradation of Lignin on Cellulose Matrix. Journal of Wood Chemistry and Technology, 1999, 19, 43-60.	1.7	12
503	Enhanced wet tensile paper properties via dielectric-barrier discharge. Holzforschung, 2005, 59, 65-71.	1.9	12
504	Characterization of Fiber Carboxylic Acid Development during One-Stage Oxygen Delignification. Industrial & Engineering Chemistry Research, 2005, 44, 9279-9285.	3.7	12

#	Article	IF	CITATIONS
505	Lignin Structure and Aggregation Behavior in a Two-Component Ionic Liquid Solvent System. BioResources, 2014, 9, .	1.0	12
506	Laccase-catalyzed α-arylation of benzoylacetonitrile with substituted hydroquinones. Chemical Engineering Research and Design, 2015, 97, 128-134.	5.6	12
507	Application of a Pyroprobe–Deuterium NMR System: Deuterium Tracing and Mechanistic Study of Upgrading Process for Lignin Model Compounds. Energy & Fuels, 2016, 30, 2968-2974.	5.1	12
508	Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol. Applied Catalysis A: General, 2017, 546, 67-78.	4.3	12
509	New Technologies are Needed to Improve the Recycling and Upcycling of Waste Plastics. ChemSusChem, 2021, 14, 3982-3984.	6.8	12
510	Brightness reversion of mechanical pulps VIII. Investigation of synergistic photostabilization methods for high-yield pulp. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 104, 217-224.	3.9	11
511	Comparative Evaluation of Oxygen Delignification Processes for Low- and High-Lignin-Content Softwood Kraft Pulps. Industrial & Engineering Chemistry Research, 2002, 41, 5171-5180.	3.7	11
512	First characterization of the development of bleached kraft softwood pulp fiber interfaces during drying and rewetting using FRET microscopy. Holzforschung, 2008, 62, 383-388.	1.9	11
513	In situ upgrading of whole biomass to biofuel precursors with low average molecular weight and acidity by the use of zeolite mixture. RSC Advances, 2015, 5, 74821-74827.	3.6	11
514	Ecofriendly syntheses of phenothiazones and related structures facilitated by laccase – a comparative study. Tetrahedron Letters, 2016, 57, 3749-3753.	1.4	11
515	Effect of in Vivo Deuteration on Structure of Switchgrass Lignin. ACS Sustainable Chemistry and Engineering, 2017, 5, 8004-8010.	6.7	11
516	Polyurethanes Based on Unmodified and Refined Technical Lignins: Correlation between Molecular Structure and Material Properties. Biomacromolecules, 2021, 22, 2129-2136.	5.4	11
517	Brightness Reversion of Mechanical Pulps. III. Mechanistic Studies of Mercapto-Stabilizers for High Brightness Mechanical Pulps. Journal of Wood Chemistry and Technology, 1995, 15, 135-152.	1.7	10
518	Yellowing Mechanism and Kinetics of Thick Handsheets of Softwood Thermomechanical Pulp. Journal of Wood Chemistry and Technology, 1995, 15, 113-133.	1.7	10
519	Preparation and Characterization of Microcellulose and Nanocellulose Fibers from Artemisia Vulgaris Bast. Polymers, 2019, 11, 907.	4.5	10
520	Cellulose hydrolysis by <i>Clostridium thermocellum</i> is agnostic to substrate structural properties in contrast to fungal cellulases. Green Chemistry, 2019, 21, 2810-2822.	9.0	10
521	Preface to Special Issue ofChemSusChemon Lignin Valorization: From Theory to Practice. ChemSusChem, 2020, 13, 4175-4180.	6.8	10
522	From cellulose to 1,2,4-benzenetriol <i>via</i> catalytic degradation over a wood-based activated carbon catalyst. Catalysis Science and Technology, 2020, 10, 3423-3432.	4.1	10

#	Article	IF	CITATIONS
523	Chemical modification of lignin-rich paper. Nordic Pulp and Paper Research Journal, 1998, 13, 124-131.	0.7	10
524	Ferric chloride aided peracetic acid pretreatment for effective utilization of sugarcane bagasse. Fuel, 2022, 319, 123739.	6.4	10
525	Chemical and Morphological Structure of Transgenic Switchgrass Organosolv Lignin Extracted by Ethanol, Tetrahydrofuran, and \hat{I}^3 -Valerolactone Pretreatments. ACS Sustainable Chemistry and Engineering, 2022, 10, 9041-9052.	6.7	10
526	Oxygen Degradation and Spectroscopic Characterization of Hardwood Kraft Lignin. Industrial & Engineering Chemistry Research, 2002, 41, 5941-5948.	3.7	9
527	Alkaline peroxide treatment of ECF bleached softwood kraft pulps. Part 1. Characterizing the effect of alkaline peroxide treatment on carboxyl groups of fibers. Holzforschung, 2007, 61, 445-450.	1.9	9
528	Chemical Pretreatment Techniques for Biofuels and Biorefineries from Softwood. Green Energy and Technology, 2013, , 151-179.	0.6	9
529	Structural elucidation of hydro-products from hydrothermal carbonization of loblolly pine at different temperatures using NMR techniques. Energy, 2017, 133, 171-178.	8.8	9
530	Solid-State NMR Investigation of Bio-chars Produced from Biomass Components and Whole Biomasses. Bioenergy Research, 2017, 10, 1036-1044.	3.9	9
531	Ultrastructure and Enzymatic Hydrolysis of Deuterated Switchgrass. Scientific Reports, 2018, 8, 13226.	3.3	9
532	Lignin â€ [~] First' Pretreatments: Research Opportunities and Challenges. Biofuels, Bioproducts and Biorefining, 2018, 12, 515-517.	3.7	9
533	Engineered Sorghum Bagasse Enables a Sustainable Biorefinery with <i>p</i> â€Hydroxybenzoic Acidâ€Based Deep Eutectic Solvent. ChemSusChem, 2021, 14, 5235-5244.	6.8	9
534	Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells. PLoS ONE, 2014, 9, e115906.	2.5	9
535	Bioenergy Underground: Challenges and opportunities for phenotyping roots and the microbiome for sustainable bioenergy crop production. The Plant Phenome Journal, 2022, 5, .	2.0	9
536	Epoxy as Filler or Matrix for Polymer Composites. , 0, , .		9
537	A New Model Compound for Studying Alkaline Cellulose Chain Cleavage Reactions. Journal of Wood Chemistry and Technology, 1995, 15, 431-452.	1.7	8
538	Brightness Reversion of Mechanical Pulps VII: Photostabilization Studies of Thiol Additives for Ligniocellulosic Materials. Journal of Wood Chemistry and Technology, 1996, 16, 327-345.	1.7	8
539	Intrinsic Metal Binding Capacity of Kraft Lignins. Journal of Wood Chemistry and Technology, 2000, 20, 133-145.	1.7	8
540	PHOTOYELLOWING OF UNTREATED AND ACETYLATED ASPEN CHEMITHERMOMECHANICAL PULP UNDER ARGON, AMBIENT, AND OXYGEN ATMOSPHERES. Journal of Wood Chemistry and Technology, 2001, 21, 343-360.	1.7	8

#	Article	IF	CITATIONS
541	Biografting of Celestine Blue onto a High Kappa Kraft Pulp. ACS Symposium Series, 2003, , 66-80.	0.5	8
542	Deformation behavior of wet lignocellulosic fibers. Holzforschung, 2007, 61, 261-266.	1.9	8
543	Alkaline peroxide treatment of ECF bleached softwood kraft pulps: Part 2. Effect of increased fiber charge on refining, wet-end application, and hornification. Holzforschung, 2007, 61, 451-458.	1.9	8
544	Biopolymer Nanocomposite Films Reinforced with Nanocellulose Whiskers. Journal of Nanoscience and Nanotechnology, 2012, 12, 218-226.	0.9	8
545	Development of New Methods in Scanning Probe Microscopy for Lignocellulosic Biomass Characterization. Industrial Biotechnology, 2012, 8, 245-249.	0.8	8
546	The use of combination of zeolites to pursue integrated refined pyrolysis oil from kraft lignin. Sustainable Chemical Processes, 2014, 2, .	2.3	8
547	Determining the Syringyl/Guaiacyl Lignin Ratio in the Vessel and Fiber Cell Walls of Transgenic <i>Populus</i> Plants. Energy & Fuels, 2016, 30, 5716-5720.	5.1	8
548	Understanding the Changes to Biomass Surface Characteristics after Ammonia and Organosolv Pretreatments by Using Timeâ€ofâ€Flight Secondaryâ€ion Mass Spectrometry (TOFâ€&IMS). ChemPlusChem, 202 82, 686-690.	12,8	8
549	Enhanced Production of Bioethanol by Fermentation of Autohydrolyzed and C4mimOAc-Treated Sugarcane Bagasse Employing Various Yeast Strains. Energies, 2017, 10, 1207.	3.1	8
550	The physiochemical alteration of flax fibers structuring components after different scouring and bleaching treatments. Industrial Crops and Products, 2021, 160, 113112.	5.2	8
551	Degradation of aromatic compounds and lignin by marine protist Thraustochytrium striatum. Process Biochemistry, 2021, 107, 13-17.	3.7	8
552	Chemical modification of lignin-rich paper. Nordic Pulp and Paper Research Journal, 1998, 13, 198-205.	0.7	8
553	Product Characteristics and Synergy Study on Supercritical Methanol Liquefaction of Lignocellulosic Biomass and Plastic. ACS Sustainable Chemistry and Engineering, 2021, 9, 17103-17111.	6.7	8
554	Strikingly high amount of tricin-lignin observed from vanilla (<i>Vanilla planifolia</i>) aerial roots. Green Chemistry, 2022, 24, 259-270.	9.0	8
555	13C magnetic resonance studies. 129. Homoenolization in the camphenilone system. Examination of some 7-substituted derivatives. Canadian Journal of Chemistry, 1987, 65, 789-797.	1.1	7
556	Mechanism of dielectric-barrier discharge initiated wet-strength development. Journal of Applied Polymer Science, 2005, 98, 2219-2225.	2.6	7
557	Preparation of microwaveâ€assisted polymerâ€grafted softwood kraft pulp fibers. Enhanced water absorbency. Journal of Applied Polymer Science, 2011, 119, 387-395.	2.6	7
558	Challenging/interesting lignin times. Biofuels, Bioproducts and Biorefining, 2016, 10, 489-491.	3.7	7

#	Article	IF	CITATIONS
559	Dynamic Self-Assembly of Polyelectrolyte Composite Nanomaterial Film. Polymers, 2019, 11, 1258.	4.5	7
560	Structural Insights into Low and High Recalcitrance Natural Poplar Variants Using Neutron and X-ray Scattering. ACS Sustainable Chemistry and Engineering, 2020, 8, 13838-13849.	6.7	7
561	Influence of chain length in protic ionic liquids on physicochemical and structural features of lignins from sugarcane bagasse. Industrial Crops and Products, 2021, 159, 113080.	5.2	7
562	Effect of Dilute Acetic Acid Hydrolysis on Xylooligosaccharide Production and the Inhibitory Effect of Cellulolytic Enzyme Lignin from Poplar. ACS Sustainable Chemistry and Engineering, 2021, 9, 11361-11371.	6.7	7
563	Terephthalic Acid Copolyesters Containing Tetramethylcyclobutanediol for Highâ€Performance Plastics. ChemistryOpen, 2021, 10, 830-841.	1.9	7
564	CHAPTER 4. Lignin Modification to Reduce the Recalcitrance of Biomass Processing. RSC Energy and Environment Series, 2013, , 37-52.	0.5	7
565	Effect of Protic Ionic Liquids in Sugar Cane Bagasse Pretreatment for Lignin Valorization and Ethanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 16965-16976.	6.7	7
566	Structural Reorganization of Noncellulosic Polymers Observed In Situ during Dilute Acid Pretreatment by Small-Angle Neutron Scattering. ACS Sustainable Chemistry and Engineering, 2022, 10, 314-322.	6.7	7
567	Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 8704-8714.	6.7	7
568	NMR Studies II. Investigation of Process Analytical NMR Techniques for the Pulp and Paper Industry1. Journal of Wood Chemistry and Technology, 1997, 17, 287-296.	1.7	6
569	Study of thioglycosylation in ionic liquids. Beilstein Journal of Organic Chemistry, 2006, 2, 12.	2.2	6
570	Structure Analysis of Pine Bark-, Residue-, and Stem-Derived Light Oil and Its Hydrodeoxygenation Products. Industrial & Engineering Chemistry Research, 2014, 53, 11269-11275.	3.7	6
571	Recalcitrance and structural analysis by water-only flowthrough pretreatment of 13C enriched corn stover stem. Bioresource Technology, 2015, 197, 128-136.	9.6	6
572	Simultaneous depolymerization and fermentation of lignin into value-added products by the marine protist, Thraustochytrium striatum. Algal Research, 2020, 46, 101773.	4.6	6
573	Physicochemical changes of cellulose and their influences on Populus trichocarpa digestibility after different pretreatments. BioResources, 2019, 14, 9658-9676.	1.0	6
574	Re-defining the Future of FOG and Biodiesel. Journal of Petroleum & Environmental Biotechnology, 2013, 04, .	0.3	6
575	Effect of using regenerated combined FAU and MOR zeolites as catalysts during the pyrolysis of kraft lignin. BioResources, 2020, 16, 417-440.	1.0	6
576	Coal polymer composites prepared by fused deposition modeling (FDM) 3D printing. Journal of Materials Science, 2022, 57, 10141-10152.	3.7	6

#	Article	IF	CITATIONS
577	A serendipitous, high yield conversion of norbornenone to tricyclo[3.2.1.02,7]octan-4-one. Canadian Journal of Chemistry, 1983, 61, 2254-2256.	1.1	5
578	13C nuclear magnetic resonance studies. 114. An examination of the [3.3.1.0]â€,→â€,[4.3.0.0] rearrangement v β-enolization and H/D exchange in tricyclic ketones. Canadian Journal of Chemistry, 1985, 63, 1250-1257.	via 1.1	5
579	13C magnetic resonance studies. 124. Preparative ring expansions of bicyclic ketones by homoketonization of cyclopropoxide analogs. Canadian Journal of Chemistry, 1986, 64, 1390-1399.	1.1	5
580	Delving into the fundamental LMS Delignification of High-Kappa Kraft Pulps. Progress in Biotechnology, 2002, 21, 151-164.	0.2	5
581	Improving Physical Properties of Kraft Hardwood Pulps by Copulping with Agricultural Residues. Industrial & Engineering Chemistry Research, 2013, 52, 3300-3305.	3.7	5
582	Black Liquor Valorization by Using Marine Protist Thraustochytrium striatum and the Preliminary Metabolic Mechanism Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 1786-1796.	6.7	5
583	Competitive effects of glucan's main hydrolysates on biochar formation: A combined experiment and density functional theory analysis. Bioresource Technology, 2022, 359, 127427.	9.6	5
584	13C magnetic resonance studies. 120. The Simmons–Smith reaction with some silyl enol ethers. Unusual ring expansions of some norcamphorsti. Canadian Journal of Chemistry, 1985, 63, 2969-2974.	1.1	4
585	Brightness Reversion of Mechanical Pulps. X. Photoreversion Fiber Topochemistry. Journal of Wood Chemistry and Technology, 1998, 18, 289-297.	1.7	4
586	Wet-stiffening of TMP and kraft fibers via dielectricbarrier discharge treatment. Nordic Pulp and Paper Research Journal, 2004, 19, 384-385.	0.7	4
587	Brightness Reversion of Mechanical Pulps. XIX. Photostabilization of Mechanical Pulps by UV Absorbers: Surface Photochemical Studies Using Diffuse Reflectance Technique. Journal of Wood Chemistry and Technology, 2005, 24, 39-53.	1.7	4
588	Tailoring the Wet Strength of Linerboard Via Dielectric Barrier Discharge. Journal of Wood Chemistry and Technology, 2006, 26, 289-297.	1.7	4
589	Experimental and modeling of carbonate formation in the effluent of oxygen delignification. AICHE Journal, 2007, 53, 669-677.	3.6	4
590	Analysis of microwave vs. thermally assisted grafting of poly(methyl-vinyl ether co-maleic) Tj ETQq0 0 0 rgBT /Ove	erlock 10 ⁻	Tf 50 222 Td
591	The production of hydrogen–deuterium exchanged cellulose fibers with exchange-resistant deuterium incorporation. Cellulose, 2020, 27, 6163-6174.	4.9	4
592	Recent Advances in Synthesis and Application of Lignin Nanoparticles. ACS Symposium Series, 2021, , 273-293.	0.5	4
593	Opportunities and Challenges of Lignin Utilization. ACS Symposium Series, 2021, , 1-12.	0.5	4
594	Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols. Journal of Biobased Materials and Bioenergy, 2009, 3, 108-111.	0.3	4

#	Article	IF	CITATIONS
595	Fabrication of lignocellulosic biomass paper containing nanofibrillated biomass. BioResources, 2020, 16, 209-222.	1.0	4
596	Direct observations of bonding influence on the tensile creep behavior of paper. Nordic Pulp and Paper Research Journal, 2006, 21, 297-302.	0.7	4
597	A Unique Bacterial Pelletized Cultivation Platform in <i>Rhodococcus opacus</i> PD630 Enhanced Lipid Productivity and Simplified Harvest for Lignin Bioconversion. ACS Sustainable Chemistry and Engineering, 2022, 10, 1083-1092.	6.7	4
598	Enhancing Lignin Dispersion and Bioconversion by Eliminating Thermal Sterilization. ACS Sustainable Chemistry and Engineering, 2022, 10, 3245-3254.	6.7	4
599	Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites. Journal of Materials Science, 2022, 57, 8127-8138.	3.7	4
600	13C magnetic resonance studies 133. An examination of the effect of conformation on β-enolization in some bicyclo[3.2.1]octan-2-ones. Canadian Journal of Chemistry, 1988, 66, 454-460.	1.1	3
601	Investigation of ortho- and para-Quinone Chromophores in Alkaline Extraction Stage Residual Lignins. ACS Symposium Series, 1999, , 505-519.	0.5	3
602	Brightness Reversion of Mechanical Pulps XI: Photostabilization of High-Yield Pulps by Thiosulfinates. Journal of Wood Chemistry and Technology, 1999, 19, 27-41.	1.7	3
603	Breaking the Oxygen Delignification Barrier: Lignin Reactivity and Inactivity. ACS Symposium Series, 2001, , 92-107.	0.5	3
604	Lignin Exhibits Recalcitranceâ€Associated Features Following the Consolidated Bioprocessing of Populus trichocarpa Natural Variants. ChemistrySelect, 2017, 2, 10642-10647.	1.5	3
605	Allelopathic effects of exogenous phenylalanine: a comparison of four monocot species. Planta, 2017, 246, 673-685.	3.2	3
606	Measurement of Physicochemical Properties of Lignin. ACS Symposium Series, 2019, , 33-47.	0.5	3
607	Production of deuterated biomass by cultivation of Lemna minor (duckweed) in D2O. Planta, 2019, 249, 1465-1475.	3.2	3
608	Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues. Methods in Molecular Biology, 2019, 1995, 103-120.	0.9	3
609	In-situ evaluation for upgrading of biomass over noble metal catalysts by isotopic tracing and NMR monitoring. Journal of Analytical and Applied Pyrolysis, 2019, 137, 253-258.	5.5	3
610	Synergistic Improvement of Carbohydrate and Lignin Processability by Biomimicking Biomass Processing. Frontiers in Energy Research, 2021, 8, .	2.3	3
611	The preparation and characterization of chemically deuterium incorporated cotton fibers. Cellulose, 2021, 28, 5351.	4.9	3
612	Use of a Lewis acid, a BrÃ,nsted acid, and their binary mixtures for the liquefaction of lignocellulose by supercritical ethanol processing. Sustainable Energy and Fuels, 2021, 5, 5445-5453.	4.9	3

#	Article	IF	CITATIONS
613	Bleaching kraft pulps with in-situ generated dioxiranes. Industrial & Engineering Chemistry Research, 1995, 34, 400-403.	3.7	2
614	Mechanistic Investigations into the Brightness Stabilization Effects of Hexadienol. Journal of Wood Chemistry and Technology, 1996, 16, 79-93.	1.7	2
615	Chemical Modification of Lignin-Rich Paper. ACS Symposium Series, 1999, , 490-504.	0.5	2
616	Biotechnology in the pulp and paper industry. A challenge for change Progress in Biotechnology, 2002, 21, 7-12.	0.2	2
617	DIELECTRIC-BARRIER DISCHARGE INITIATED GRAFTING TO ENHANCE FIBER CHARGE. Chemical Engineering Communications, 2006, 193, 683-688.	2.6	2
618	Effect of photolysis on 17th/18th century paper. Holzforschung, 2007, 61, 131-137.	1.9	2
619	The effect of fiber charge enhanced by chemical oxidation on paper dry-tensile stiffness. Nordic Pulp and Paper Research Journal, 2007, 22, 76-79.	0.7	2
620	Publisher's Note: Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation [Phys. Rev. E 83 , 061911 (2011)]. Physical Review E, 2011, 84, .	2.1	2
621	<scp>US</scp> –Swedish bridge to the future: sustainable forest biorefining. Biofuels, Bioproducts and Biorefining, 2014, 8, 295-297.	3.7	2
622	Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass. Analytical Methods, 2015, 7, 4541-4545.	2.7	2
623	Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass. ACS Sustainable Chemistry and Engineering, 2017, 5, 6131-6138.	6.7	2
624	Structural Studies of Deuterium-Labeled Switchgrass Biomass. ACS Symposium Series, 2019, , 17-32.	0.5	2
625	Synergistic enhancement of nanocellulose foam with dual in situ mineralization and crosslinking reaction. International Journal of Biological Macromolecules, 2020, 165, 3198-3205.	7.5	2
626	Fine grinding of thermoplastics by high speed friction grinding assisted by guar gum. Journal of Applied Polymer Science, 2021, 138, 50797.	2.6	2
627	Thermal gravimetric analysis of in-situ crosslinked nanocellulose whiskers • poly(methyl vinyl) Tj ETQq1 1 0.78	4314 rgBT 0.5	Qverlock 1
628	Integration of hemicellulose pre-extraction in the bleach-grade pulp production process. Tappi Journal, 2013, 12, 55-61.	0.5	2
629	Rigid polyurethane foam reinforced with cellulose whiskers: Synthesis and characterization. Nano-Micro Letters, 2010, 2, 89.	27.0	2
630	13C magnetic resonance studies. 119. Tricyclo[3.3.0.0] and [3.2.1.0]octanones from substituted norbornenones via cyclopropanation and homoketonization. Canadian Journal of Chemistry, 1985, 63, 2961-2968.	1.1	1

#	Article	IF	CITATIONS
631	Thin protective film for magnetic discs. IEEE Transactions on Magnetics, 1988, 24, 2653-2654.	2.1	1
632	Roundtable Discussion: Sustainability in the pulp & paper industry. Industrial Biotechnology, 2007, 3, 138-144.	0.8	1
633	Biorefining and beyond. Biofuels, Bioproducts and Biorefining, 2008, 2, 199-200.	3.7	1
634	In-situ evaluation for upgrading of biomass model compounds over noble metal catalysts by isotopic tracing and NMR monitoring. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104615.	5.5	1
635	<i>ACS Sustainable Chemistry & Engineering</i> Virtual Special Issue on Recent Advances in Biomass Characterization and Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 10321-10322.	6.7	1
636	2D HSQC Chemical Shifts of Impurities from Biomass Pretreatment. ChemistrySelect, 2020, 5, 3359-3364.	1.5	1
637	Cellulose Nanofiber Templating: Recent Advances in Functional Materials through Cellulose Nanofiber Templating (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170094.	21.0	1
638	Charging Cellulose Spheres: Synthesis of 2,3-Disulfonated Cellulose in Bead Form. Journal of Biobased Materials and Bioenergy, 2010, 4, 440-445.	0.3	1
639	The formation of the population genetic structure of the European eel Anguilla anguillaÂ(L.): a short review. Ekologija (Vilnius, Lithuania), 2014, 59, .	0.2	1
640	High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose. Nano-Micro Letters, 2011, 2, .	27.0	1
641	13C NMR Spectra of Several Tricyclo[6.3.0.02,6]undecane Derivatives. Magnetic Resonance in Chemistry, 1985, 23, 689-691.	1.9	0
642	Comparison of the properties of native and pentaammineruthenium(III)-modified xylanase. Enzyme and Microbial Technology, 1996, 19, 367-373.	3.2	0
643	TEMPO-Catalyzed Oxidation of Benzylic Alcohols to Aldehydes with the H2O2/HBr/ionic Liquid [bmim]PF6 System ChemInform, 2005, 36, no.	0.0	0
644	Copper(II)-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes in Ionic Liquid [bmpy]PF6 ChemInform, 2005, 36, no.	0.0	0
645	Atomic Force Microscopy Characterization of Switchgrass. Microscopy and Microanalysis, 2010, 16, 1040-1041.	0.4	0
646	New energy and green entrepreneurship. Biofuels, Bioproducts and Biorefining, 2011, 5, 227-228.	3.7	0
647	Interview with Art Ragauskas. Industrial Biotechnology, 2013, 9, 100-102.	0.8	0
648	When to accept no $\hat{a} \in \frac{1}{2}$ to yesterday's solutions. Biofuels, Bioproducts and Biorefining, 2013, 7, 217-219.	3.7	0

#	Article	IF	CITATIONS
649	A â€~Twitter' Generation Perspective on Biorefining. Biofuels, Bioproducts and Biorefining, 2013, 7, 629-633.	3.7	0
650	Cover Image, Volume 14, Issue 3. Biofuels, Bioproducts and Biorefining, 2020, 14, i.	3.7	0
651	Lignin Valorization in Biorefineries Through Integrated Fractionation, Advanced Characterization, and Fermentation Intensification Strategies. , 2021, , 337-362.		0
652	Do-Able Biofuels. Journal of Petroleum & Environmental Biotechnology, 2012, 03, .	0.3	0
653	Do-Able Biofuels. Journal of Petroleum & Environmental Biotechnology, 2012, 03, .	0.3	0
654	SANS study of structures and deuterium incorporation into vegetative leaf stalks of deuterated kale (<i>Brassica oleracea</i>). Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a324-a324.	0.1	0
655	Measuring Biomass-Derived Products in Biological Conversion and Metabolic Process. Methods in Molecular Biology, 2020, 2096, 113-124.	0.9	0
656	Research on Chemically Deuterated Cellulose Macroperformance and Fast Identification. Frontiers in Plant Science, 2021, 12, 709692.	3.6	0
657	Cover Feature: Preparation, Properties, and Application of Lignocellulosicâ€Based Fluorescent Carbon Dots (ChemSusChem 8/2022). ChemSusChem, 2022, 15, .	6.8	0
658	Deuterium incorporation into cellulose: a mini-review of biological and chemical methods. Cellulose, 2022, 29, 4269.	4.9	0