Lulu Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088614/publications.pdf

Version: 2024-02-01

471509 477307 1,079 66 17 29 citations h-index g-index papers 68 68 68 852 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnology for Biofuels, 2021, 14, 205.	6.2	94
2	Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Frontiers in Plant Science, 2019, 10, 1172.	3.6	85
3	Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. Journal of Materials Chemistry A, 2019, 7, 14033-14041.	10.3	54
4	Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants. Frontiers in Plant Science, 2021, 12, 663477.	3.6	53
5	Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae:) Tj ETQq1 1 0.784 Biochemistry and Molecular Biology, 2015, 65, 35-46.	1314 rgBT 2.7	Overlock 10 44
6	Differences in the Structure of the Gut Bacteria Communities in Development Stages of the Chinese White Pine Beetle (Dendroctonus armandi). International Journal of Molecular Sciences, 2013, 14, 21006-21020.	4.1	43
7	Changes in the composition of volatile monoterpenes and sesquiterpenes of Pinus armandi, P. tabulaeformis, and P. bungeana in Northwest China. Chemistry of Natural Compounds, 2006, 42, 534-538.	0.8	41
8	Toxins from a symbiotic fungus, Leptographium qinlingensis associated with Dendroctonus armandi and their in vitro toxicities to Pinus armandi seedlings. European Journal of Plant Pathology, 2012, 134, 239-247.	1.7	38
9	Laboratory evaluation of flight activity of <i>Dendroctonus armandi</i> (Coleoptera: Curculionidae:) Tj ETQq $1\ 1\ 0$).784314 0.8	rgBT /Over <mark>lo</mark>
10	Characterisation of GST genes from the Chinese white pine beetle <i>Dendroctonus armandi</i> (Curculionidae: Scolytinae) and their response to host chemical defence. Pest Management Science, 2016, 72, 816-827.	3.4	36
11	Influence of temperature, pH and metal ions on guaiacol oxidation of purified laccase from Leptographium qinlingensis. World Journal of Microbiology and Biotechnology, 2014, 30, 1285-1290.	3.6	35
12	Identification, Expression Patterns and RNA Interference of Aquaporins in Dendroctonus armandi (Coleoptera: Scolytinae) Larvae During Overwintering. Frontiers in Physiology, 2019, 10, 967.	2.8	35
13	Woodâ€Inspired Binder Enabled Vertical 3D Printing of gâ€C ₃ N ₄ /CNT Arrays for Highly Efficient Photoelectrochemical Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2105045.	14.9	34
14	Funneliformis mosseae Enhances Root Development and Pb Phytostabilization in Robinia pseudoacacia in Pb-Contaminated Soil. Frontiers in Microbiology, 2019, 10, 2591.	3.5	31
15	A SPX domainâ€containing phosphate transporter from <i>Rhizophagus irregularis</i> handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. New Phytologist, 2022, 234, 650-671.	7.3	25
16	Isolation of <i>CarE</i> genes from the Chinese white pine beetle <i>Dendroctonus armandi</i> (Curculionidae: Scolytinae) and their response to host chemical defense. Pest Management Science, 2019, 75, 986-997.	3.4	23
17	Electrophysiological and behavioral responses of Dendroctonus armandi (Coleoptera: Curculionidae:) Tj ETQq1 1 (2017, 27, 91-99.	0.784314 1.1	rgBT Overlo 20
18	Metabolism and cold tolerance of <scp>C</scp> hinese white pine beetle <i><scp>D</scp>endroctonus armandi</i> (<scp>C</scp> oleoptera: <scp>C</scp> urculionidae: <scp>S</scp> colytinae) during the overwintering period. Agricultural and Forest Entomology, 2017, 19, 10-22.	1.3	18

#	Article	IF	CITATIONS
19	Comparison of enzymatic saccharification and lignin structure of masson pine and poplar pretreated by p-Toluenesulfonic acid. International Journal of Biological Macromolecules, 2020, 151, 861-869.	7.5	18
20	Neofusicoccum parvum causing canker of seedlings of Juglans regia in China. Journal of Forestry Research, 2015, 26, 1019-1024.	3.6	16
21	Dendroctonus armandi (Curculionidae: Scolytinae) cytochrome P450s display tissue specificity and responses to host terpenoids. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 201, 1-11.	1.6	16
22	Identification, Expression Patterns, and Functional Characterization of Chemosensory Proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Frontiers in Physiology, 2018, 9, 291.	2.8	16
23	Structural features and antioxidant behavior of lignins successively extracted from ginkgo shells (Ginkgo biloba L). International Journal of Biological Macromolecules, 2020, 163, 694-701.	7.5	16
24	The Differential Effects of the Blue-Stain Fungus Leptographium qinlingensis on Monoterpenes and Sesquiterpenes in the Stem of Chinese White Pine (Pinus armandi) Saplings. Forests, 2014, 5, 2730-2749.	2.1	13
25	The CYP51F1 Gene of Leptographium qinlingensis: Sequence Characteristic, Phylogeny and Transcript Levels. International Journal of Molecular Sciences, 2015, 16, 12014-12034.	4.1	13
26	Bioinspired manufacturing of oriented polysaccharides scaffolds for strong, optical haze and anti-UV/bacterial membranes. Carbohydrate Polymers, 2021, 270, 118328.	10.2	12
27	The auxinâ€inducible phosphate transporter AsPT5 mediates phosphate transport and is indispensable for arbuscule formation in Chinese milk vetch at moderately high phosphate supply. Environmental Microbiology, 2020, 22, 2053-2079.	3.8	11
28	Expression Levels of Detoxification Enzyme Genes from Dendroctonus armandi (Coleoptera:) Tj ETQq0 0 0 rgBT /C	Overlock 1 2.2	0 ₁₁ f 50 382
29	Community structure of gut bacteria of Dendroctonus armandi (Coleoptera: Curculionidae:) Tj ETQq1 1 0.784314	ł rgBT /Ov	erlock 10 Tf
30	Biodiversity and Activity of Gut Fungal Communities across the Life History of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae). International Journal of Molecular Sciences, 2018, 19, 2010.	4.1	10
31	Transcriptome analyses of the Chinese white pine beetle-fungal symbiont Leptographium qinlingensis under terpene stress or growth on host pine sawdust. Symbiosis, 2022, 86, 17-31.	2.3	10
32	Isolation and expression of HMG-CoA synthase and HMG-CoA reductase genes in different development stages, tissues and treatments of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 187, 62-70.	1.6	9
33	Gender-related responses of dioecious plant Populus cathayana to AMF, drought and planting pattern. Scientific Reports, 2020, 10, 11530.	3.3	9
34	Nutrient Uptake and Distribution in Mycorrhizal Cuttings of Populus × canadensis  Neva' Under Drought Stress. Journal of Soil Science and Plant Nutrition, 2021, 21, 2310-2324.	3.4	9
35	Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms, 2021, 9, 1557.	3.6	9
36	Transcriptional regulation of metal metabolism- and nutrient absorption-related genes in Eucalyptus grandis by arbuscular mycorrhizal fungi at different zinc concentrations. BMC Plant Biology, 2022, 22, 76.	3.6	9

#	Article	IF	CITATIONS
37	Arbuscular mycorrhizal fungal colonization improves growth, photosynthesis, and ROS regulation of split-root poplar under drought stress. Acta Physiologiae Plantarum, 2022, 44, 1.	2.1	9
38	Arbuscular Mycorrhizal Fungal Communities Are Influenced by Host Tree Species on the Loess Plateau, Northwest China. Forests, 2019, 10, 930.	2.1	8
39	Presence and roles of myrtenol, myrtanol and myrtenal in Dendroctonus armandi (Coleoptera:) Tj ETQq1 1 0.78-2020, 76, 188-197.	4314 rgBT 3.4	/Overlock 10 8
40	Isolation, Expression Profiling, and Regulation via Host Allelochemicals of 16 Glutathione S-Transferases in the Chinese White Pine Beetle, Dendroctonus armandi. Frontiers in Physiology, 2020, 11, 546592.	2.8	8
41	VBA–AMF: A VBA Program Based on the Magnified Intersections Method for Quantitative Recording of Root Colonization by Arbuscular Mycorrhizal Fungi. Indian Journal of Microbiology, 2020, 60, 374-378.	2.7	8
42	Cultivation of arbuscular mycorrhizal Broussonetia papyrifera seedlings by planting the mycorrhizal nurse plant downwards. Mycorrhiza, 2022, 32, 203-212.	2.8	8
43	Influence of <i>Rhizoglomus irregulare</i> on nutraceutical quality and regeneration of <i>Lycium barbarum</i> leaves under salt stress. Canadian Journal of Microbiology, 2017, 63, 365-374.	1.7	5
44	Factors Influencing the Geographical Distribution of Dendroctonus armandi (Coleoptera:) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.1	Tf 50 462 Td
45	Electroantennogram, behavioural responses, and field trapping of <i>Trypophloeus klimeschi</i> (Coleoptera: Curculionidae: Scolytinae) to eight host volatiles. Canadian Entomologist, 2019, 151, 236-250.	0.8	5
46	Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS Applied Materials & Eamp; Interfaces, 2022, 14, 16809-16819.	8.0	5
47	Phylogeny of Leptographium qinlingensis cytochrome P450 genes and transcription levels of six CYPs in response to different nutrition media or terpenoids. Archives of Microbiology, 2022, 204, 16.	2.2	5
48	Structural characterization of potassium hydroxide liquor lignin and its application in biorefinery. Biomass Conversion and Biorefinery, 2023, 13, 727-737.	4.6	4
49	Changes of monoterpenes in stem of Chinese white pine (Pinus armandi) saplings following treatment with Methyl Jasmonate. Forestry Studies, 2014, 60, 69-81.	0.2	4
50	Multiple PHT1 family phosphate transporters are recruited for mycorrhizal symbiosis in <i>Eucalyptus grandis</i> and conserved PHT1;4 is a requirement for the arbuscular mycorrhizal symbiosis. Tree Physiology, 2022, , .	3.1	4
51	Isolation and expression of five genes in the mevalonate pathway of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae). Archives of Insect Biochemistry and Physiology, 2021, 106, e21760.	1.5	3
52	Functional analysis of small heat shock proteins providing evidence of temperature tolerance in <i>Hyphantria cunea</i> . Journal of Applied Entomology, 2022, 146, 130-143.	1.8	3
53	Sensor Deployment Strategy and Traffic Demand Estimation with Multisource Data. Sustainability, 2021, 13, 13057.	3.2	3
54	Comparative Transcriptome Analysis Reveals Molecular Insights in Overwintering <i>Monochamus alternatus</i> (Coleoptera: Cerambycidae). Journal of Insect Science, 2022, 22, .	1.5	3

#	Article	IF	CITATIONS
55	Effects of cold stress on metabolic regulation in the overwintering larvae of the Chinese white pine beetle, Dendroctonus armandi. Entomologia Experimentalis Et Applicata, 2020, 168, 836-850.	1.4	2
56	Effect of prehydrolysis on pulping and bleaching of Acacia auriculiformis A. Cunn. ex Benth Biomass Conversion and Biorefinery, 2020, , 1.	4.6	2
57	A Pareto-improving hybrid rationing and pricing policy with multiclass network equilibria. Transportation Planning and Technology, 2018, 41, 211-228.	2.0	2
58	Identification, expression patterns and RNA interference of Capa peptide receptors in <i>Dendroctonus armandi</i> larvae under cold. Journal of Applied Entomology, 2022, 146, 144-157.	1.8	2
59	Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms, 2022, 10, 503.	3.6	2
60	Roles of Kr $\tilde{A}\frac{1}{4}$ ppel Homolog 1 and Broad-Complex in the Development of Dendroctonus armandi (Coleoptera: Scolytinae). Frontiers in Physiology, 2022, 13, 865442.	2.8	2
61	The cytochrome P450s of Leptographium qinlingensis: Gene characteristics, phylogeny, and expression in response to terpenoids. Fungal Biology, 2022, 126, 395-406.	2.5	2
62	Phosphorus Starvation- and Zinc Excess-Induced Astragalus sinicus AsZIP2 Zinc Transporter Is Suppressed by Arbuscular Mycorrhizal Symbiosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 892.	3. 5	1
63	Identification and Functional Characterization of Antifreeze Protein and Its Mutants in <i>Dendroctonus armandi</i> (Coleoptera: Curculionidae: Scolytinae) Larvae Under Cold Stress. Environmental Entomology, 2022, 51, 167-181.	1.4	1
64	Functional Characterization of Allatostatin C (PISCF/AST) and Juvenile Hormone Acid O-Methyltransferase in Dendroctonus armandi. International Journal of Molecular Sciences, 2022, 23, 2749.	4.1	1
65	Ovary Structure and Oogenesis of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae). Insects, 2021, 12, 1099.	2.2	1
66	Molecular characterization and expression of two enzymes from Dendroctonus armandi, with phloem feeding and juvenile hormone. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 252, 110537.	1.6	0