Amos Maritan

List of Publications by Citations

Source: https://exaly.com/author-pdf/4088535/amos-maritan-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

234 11,914 55 102 g-index

243 13,347 8 6.27 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
234	A universal model for mobility and migration patterns. <i>Nature</i> , 2012 , 484, 96-100	50.4	760
233	Size and form in efficient transportation networks. <i>Nature</i> , 1999 , 399, 130-2	50.4	591
232	Neutral theory and relative species abundance in ecology. <i>Nature</i> , 2003 , 424, 1035-7	50.4	563
231	Global protein function prediction from protein-protein interaction networks. <i>Nature Biotechnology</i> , 2003 , 21, 697-700	44.5	494
230	Fundamental patterns underlying gene expression profiles: simplicity from complexity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 8409-14	11.5	375
229	A backbone-based theory of protein folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 16623-33	11.5	355
228	Modeling of Protein Interaction Networks. <i>Complexus</i> , 2003 , 1, 38-44		298
227	Density dependence explains tree species abundance and diversity in tropical forests. <i>Nature</i> , 2005 , 438, 658-61	50.4	250
226	Dynamic modeling of gene expression data. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 1693-8	11.5	240
225	Optimal shapes of compact strings. <i>Nature</i> , 2000 , 406, 287-90	50.4	239
224	Patterns of relative species abundance in rainforests and coral reefs. <i>Nature</i> , 2007 , 450, 45-9	50.4	198
223	Chaos, noise, and synchronization. <i>Physical Review Letters</i> , 1994 , 72, 1451-1454	7.4	182
222	Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 19033-8	11.5	172
221	Supply-demand balance and metabolic scaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 10506-9	11.5	172
220	Emergence of structural and dynamical properties of ecological mutualistic networks. <i>Nature</i> , 2013 , 500, 449-52	50.4	170
219	Geometry and symmetry presculpt the free-energy landscape of proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 7960-4	11.5	169
218	On Hackß Law. Water Resources Research, 1996 , 32, 3367-3374	5.4	169

(2003-2006)

217	Insight into the structure of amyloid fibrils from the analysis of globular proteins. <i>PLoS Computational Biology</i> , 2006 , 2, e170	5	167
216	Scaling laws for river networks. <i>Physical Review E</i> , 1996 , 53, 1510-1515	2.4	154
215	Accurate and efficient description of protein vibrational dynamics: comparing molecular dynamics and Gaussian models. <i>Proteins: Structure, Function and Bioinformatics</i> , 2004 , 55, 635-45	4.2	146
214	Coarse-grained model of proteins incorporating atomistic detail of the active site. <i>Physical Review Letters</i> , 2005 , 95, 218102	7.4	138
213	A general basis for quarter-power scaling in animals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15816-20	11.5	133
212	Optimal paths and domain walls in the strong disorder limit. <i>Physical Review Letters</i> , 1994 , 72, 2320-237	237.4	129
211	Resilience and reactivity of global food security. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6902-7	11.5	128
210	Stochastic growth equations and reparametrization invariance. <i>Reviews of Modern Physics</i> , 1996 , 68, 96	3 z p:83	121
209	Protein Structures and Optimal Folding from a Geometrical Variational Principle. <i>Physical Review Letters</i> , 1999 , 82, 3372-3375	7.4	119
208	The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. <i>Journal of Molecular Biology</i> , 2002 , 317, 73-83	6.5	118
207	Information-based fitness and the emergence of criticality in living systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10095-100	11.5	108
206	Evolution and selection of river networks: statics, dynamics, and complexity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2417-24	11.5	100
205	Topology of the fittest transportation network. <i>Physical Review Letters</i> , 2000 , 84, 4745-8	7.4	99
204	Dynamical evolution of ecosystems. <i>Nature</i> , 2006 , 444, 926-8	50.4	93
203	Water-controlled wealth of nations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4230-3	11.5	91
202	Invasion percolation and Eden growth: Geometry and universality. <i>Physical Review Letters</i> , 1996 , 76, 37	5 4- 475	7 90
201	On skewed ARC plots of impedance of electrodes with an irreversible electrode process. <i>Electrochimica Acta</i> , 1990 , 35, 141-145	6.7	87
200	Colloquium: Geometrical approach to protein folding: a tube picture. <i>Reviews of Modern Physics</i> , 2003 , 75, 23-34	40.5	82

199	Optimal Protein Design Procedure. <i>Physical Review Letters</i> , 1996 , 77, 1901-1904	7.4	82
198	Inferring species interactions in tropical forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13854-9	11.5	81
197	Scaling, Optimality, and Landscape Evolution. <i>Journal of Statistical Physics</i> , 2001 , 104, 1-48	1.5	79
196	Scale invariance in the dynamics of spontaneous behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 10564-9	11.5	78
195	Self-templated nucleation in peptide and protein aggregation. <i>Physical Review Letters</i> , 2008 , 101, 2581	0 1 .4	77
194	Predicting the stability of large structured food webs. <i>Nature Communications</i> , 2015 , 6, 7842	17.4	75
193	Feasibility and coexistence of large ecological communities. <i>Nature Communications</i> , 2017 , 8,	17.4	63
192	Sculpting of a Fractal River Basin. <i>Physical Review Letters</i> , 1997 , 78, 4522-4525	7.4	63
191	Nematic-isotropic transition in porous media. <i>Physical Review Letters</i> , 1994 , 72, 4113-4116	7.4	63
190	Dynamics of phase separation of binary fluids. <i>Physical Review A</i> , 1992 , 45, R5347-R5350	2.6	62
189	Geometry and physics of proteins. Proteins: Structure, Function and Bioinformatics, 2002, 47, 315-22	4.2	61
188	Recurrent oligomers in proteins: an optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies. <i>Proteins: Structure, Function and Bioinformatics</i> , 2000 , 40, 662-74	4.2	60
187	Scaling body size fluctuations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4646-50	11.5	59
186	Species lifetime distribution for simple models of ecologies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 15747-51	11.5	57
185	Physiology: Allometric cascades. <i>Nature</i> , 2003 , 421, 713-4; discussion 714	50.4	57
184	Human mobility in a continuum approach. <i>PLoS ONE</i> , 2013 , 8, e60069	3.7	57
183	Network structures from selection principles. <i>Physical Review Letters</i> , 2004 , 92, 198701	7.4	56
182	Characterization and modeling of protein protein interaction networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 352, 1-27	3.3	56

181	Thermodynamics of fractal networks. <i>Physical Review Letters</i> , 1996 , 76, 3364-3367	7.4	56
180	Spatial effects on species persistence and implications for biodiversity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 4346-51	11.5	55
179	Unified perspective on proteins: a physics approach. <i>Physical Review E</i> , 2004 , 70, 041905	2.4	54
178	Elastic properties of proteins: insight on the folding process and evolutionary selection of native structures. <i>Journal of Molecular Biology</i> , 2002 , 321, 909-21	6.5	54
177	Ordering and phase transitions in random-field Ising systems. <i>Physical Review Letters</i> , 1991 , 67, 1821-1	8 <i>2</i> 744	54
176	Effect of localization on the stability of mutualistic ecological networks. <i>Nature Communications</i> , 2015 , 6, 10179	17.4	51
175	Exploring the universe of protein structures beyond the Protein Data Bank. <i>PLoS Computational Biology</i> , 2010 , 6, e1000957	5	50
174	Form, function, and evolution of living organisms. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 3332-7	11.5	46
173	Network allometry. <i>Geophysical Research Letters</i> , 2002 , 29, 3-1	4.9	46
172	Folding, Design, and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers. <i>Physical Review Letters</i> , 1998 , 81, 3287-3290	7.4	46
171	Sample and population exponents of generalized Taylorß law. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7755-60	11.5	45
170	Learning effective amino acid interactions through iterative stochastic techniques. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 42, 422-31	4.2	45
169	Flory theory for polymers. Journal of Physics Condensed Matter, 2013, 25, 503101	1.8	44
168	Models of Fractal River Basins. <i>Journal of Statistical Physics</i> , 1998 , 91, 1-15	1.5	44
167	Common attributes of native-state structures of proteins, disordered proteins, and amyloid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 6883-8	11.5	44
166	Towards a unified descriptive theory for spatial ecology: predicting biodiversity patterns across spatial scales. <i>Methods in Ecology and Evolution</i> , 2015 , 6, 324-332	7.7	43
165	Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots. <i>Biophysical Journal</i> , 2004 , 87, 2968-75	2.9	42
164	Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7045-50	11.5	41

163	Protein Design in a Lattice Model of Hydrophobic and Polar Amino Acids. <i>Physical Review Letters</i> , 1998 , 80, 2237-2240	7.4	41
162	Microseconds dynamics simulations of the outer-membrane protease T. <i>Biophysical Journal</i> , 2008 , 94, 71-8	2.9	40
161	Scaling Behavior of Self-Avoiding Random Surfaces. <i>Physical Review Letters</i> , 1984 , 53, 123-126	7.4	40
160	Folding pathways of prion and doppel. <i>Biophysical Journal</i> , 2002 , 83, 3533-41	2.9	39
159	Disentangling the effect of hybrid interactions and of the constant effort hypothesis on ecological community stability. <i>Oikos</i> , 2014 , 123, 525-532	4	38
158	Elasticity of Semiflexible Polymers with and without Self-Interactions. <i>Macromolecules</i> , 2003 , 36, 10095	-\$0;10	2 38
157	Compactness, aggregation, and prionlike behavior of protein: A lattice model study. <i>Journal of Chemical Physics</i> , 2000 , 113, 5072	3.9	38
156	Dynamics of growing interfaces. <i>Physical Review Letters</i> , 1992 , 69, 3193-3195	7.4	36
155	Self-Interactions of Strands and Sheets. <i>Journal of Statistical Physics</i> , 2003 , 110, 35-50	1.5	35
154	Random walk and the ideal chain problem on self-similar structures. <i>Physical Review Letters</i> , 1989 , 62, 2845-2848	7.4	35
153	Molecular dynamics studies on HIV-1 protease: Drug resistance and folding pathways. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 43, 365-372	4.2	33
152	Variational Approach to Protein Design and Extraction of Interaction Potentials. <i>Physical Review Letters</i> , 1998 , 81, 2172-2175	7.4	33
151	Finite Size Scaling in Ecology. <i>Physical Review Letters</i> , 1999 , 83, 4212-4214	7.4	33
150	Interfacial roughening induced by phase separation. <i>Physical Review Letters</i> , 1996 , 76, 1106-1109	7.4	33
149	Interaction potentials for protein folding. Proteins: Structure, Function and Bioinformatics, 1998, 30, 244	-84.2	32
148	Role of secondary motifs in fast folding polymers: a dynamical variational principle. <i>Physical Review Letters</i> , 2000 , 84, 3009-12	7.4	31
147	Continuum model for the growth of interfaces. <i>Physical Review E</i> , 1996 , 53, 759-778	2.4	31
146	An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. <i>Proceedings of the Royal Society B: Biological Sciences</i> ,	4.4	30

145	Stability Threshold as a Selection Principle for Protein Design. <i>Physical Review Letters</i> , 1997 , 78, 3967-3	97.04	30
144	Continuum model for river networks. <i>Physical Review Letters</i> , 1995 , 75, 577-580	7.4	30
143	Species coexistence in a neutral dynamics with environmental noise. <i>Journal of Theoretical Biology</i> , 2017 , 413, 1-10	2.3	29
142	Adhesion of solids. <i>Physical Review E</i> , 1997 , 56, 2626-2634	2.4	29
141	Generalized CNS arousal: An elementary force within the vertebrate nervous system. <i>Neuroscience</i> and <i>Biobehavioral Reviews</i> , 2016 , 68, 167-176	9	29
140	From cellular characteristics to disease diagnosis: uncovering phenotypes with supercells. <i>PLoS Computational Biology</i> , 2013 , 9, e1003215	5	28
139	Structural motifs of biomolecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 17283-6	11.5	28
138	Determination of interaction potentials of amino acids from native protein structures: Tests on simple lattice models. <i>Journal of Chemical Physics</i> , 1999 , 110, 10123-10133	3.9	28
137	Randomly pinned landscape evolution. <i>Physical Review E</i> , 1997 , 55, R4865-R4868	2.4	27
136	Energy landscape and native-state structure of proteins simplified model. <i>Europhysics Letters</i> , 2002 , 58, 623-629	1.6	27
135	Scale Invariant Correlations in a Driven Dissipative Gas. <i>Physical Review Letters</i> , 1998 , 80, 4410-4413	7.4	27
134	Extraction of interaction potentials between amino acids from native protein structures. <i>Journal of Chemical Physics</i> , 2000 , 112, 9151-9166	3.9	26
133	Bethe approximation for a semiflexible polymer chain. <i>Physical Review E</i> , 1998 , 58, R5241-R5244	2.4	26
132	Maritan and Banavar reply. <i>Physical Review Letters</i> , 1994 , 73, 2932	7.4	26
131	On species persistence-time distributions. <i>Journal of Theoretical Biology</i> , 2012 , 303, 15-24	2.3	25
130	Amino acid classes and the protein folding problem. <i>Journal of Chemical Physics</i> , 2001 , 114, 1420-1423	3.9	25
129	A knowledge-based scale for amino acid membrane propensity. <i>Proteins: Structure, Function and Bioinformatics</i> , 2003 , 50, 114-21	4.2	24
128	Protein threading by learning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 14350-5	11.5	24

127	Critical behavior of two-dimensional vesicles in the deflated regime. <i>Physical Review A</i> , 1991 , 43, 5752-5	572564	24
126	Diffusion on two-dimensional random walks. <i>Physical Review Letters</i> , 1987 , 58, 1758-1760	7.4	24
125	River landscapes and optimal channel networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6548-6553	11.5	23
124	Self-similarity and scaling in forest communities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 7658-62	11.5	23
123	What can one learn from experiments about the elusive transition state?. <i>Protein Science</i> , 2004 , 13, 244	66537	23
122	Force dependence of the Michaelis constant in a two-state ratchet model for molecular motors. <i>Physical Review Letters</i> , 2001 , 86, 1134-7	7.4	23
121	Steric Constraints in Model Proteins. <i>Physical Review Letters</i> , 1998 , 80, 5683-5686	7.4	23
120	Molecular dynamics of phase separation in narrow channels. <i>Physical Review E</i> , 1993 , 47, R2265-R2268	2.4	23
119	Monte Carlo mean-field theory. <i>Physical Review Letters</i> , 1991 , 67, 1807	7.4	23
118	Lattice tube model of proteins. <i>Physical Review Letters</i> , 2004 , 93, 238101	7.4	22
117	Geometry of Compact Tubes and Protein Structures. <i>Complexus</i> , 2003 , 1, 4-13		21
116	Spin-flip avalanches and dynamics of first order phase transitions. <i>Physical Review Letters</i> , 1994 , 72, 946	5 7.4	21
115	Spectral dimension of a fractal structure with long-range interactions. <i>Physical Review B</i> , 1986 , 34, 456-	45.9	21
114	Upscaling species richness and abundances in tropical forests. <i>Science Advances</i> , 2017 , 3, e1701438	14.3	20
113	Spatial aggregation and the species-area relationship across scales. <i>Journal of Theoretical Biology</i> , 2012 , 313, 87-97	2.3	20
112	Random walks with intersections: Static and dynamic fractal properties. <i>Physical Review A</i> , 1987 , 36, 23	3 8. 2 35	120
111	Dynamic metabolic adaptation can promote species coexistence in competitive microbial communities. <i>PLoS Computational Biology</i> , 2020 , 16, e1007896	5	19
110	Physics of thick polymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 650-679	2.6	19

109	Folding Lennard-Jones proteins by a contact potential. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , 37, 544-53	4.2	19
108	The spectrum of a one-dimensional hierarchical model. <i>Journal of Statistical Physics</i> , 1988 , 52, 595-608	1.5	19
107	Predicting spatial similarity of freshwater fish biodiversity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7058-62	11.5	18
106	First-principles design of nanomachines. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 6900-3	11.5	18
105	Pretransitional behavior of a water in liquid crystal microemulsion close to the demixing transition: evidence for intermicellar attraction mediated by paranematic fluctuations. <i>Journal of Chemical Physics</i> , 2005 , 122, 214721	3.9	17
104	A self-consistent knowledge-based approach to protein design. <i>Biophysical Journal</i> , 2001 , 80, 480-90	2.9	17
103	Dynamical relaxation of the surface tension of miscible phases. <i>Physical Review Letters</i> , 1993 , 71, 3465-	3 / 1648	17
102	Statistical mechanics of random paths on disordered lattices. <i>Journal of Statistical Physics</i> , 1994 , 75, 669	9-7.96	17
101	Explorability and the origin of network sparsity in living systems. Scientific Reports, 2017, 7, 12323	4.9	16
100	Crucial stages of protein folding through a solvable model: predicting target sites for enzyme-inhibiting drugs. <i>Protein Science</i> , 2002 , 11, 1878-87	6.3	16
99	A new interpolation formula for semiflexible polymers. <i>Biophysical Chemistry</i> , 2005 , 115, 251-4	3.5	16
98	Computational approach to the protein-folding problem. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 42, 433-435	4.2	16
97	A comparative study of existing and new design techniques for protein models. <i>Journal of Chemical Physics</i> , 1999 , 110, 9730-9738	3.9	16
96	Non-neutral vegetation dynamics. <i>PLoS ONE</i> , 2006 , 1, e78	3.7	16
95	Organization of ecosystems in the vicinity of a novel phase transition. <i>Physical Review Letters</i> , 2004 , 92, 218703	7.4	15
94	Multiple Steering Molecular Dynamics Applied to Water Exchange at Alkali Ions. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 13027-13032	3.4	15
93	Weak non-self-averaging behavior for diffusion in a trapping environment. <i>Physical Review E</i> , 1994 , 49, 227-231	2.4	15
92	Covariations in ecological scaling laws fostered by community dynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10672-10677	11.5	14

91	The effect of quenched disorder in neutral theories. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2013 , 2013, P04032	1.9	14
90	Scoring functions in protein folding and design. <i>Protein Science</i> , 2000 , 9, 812-9	6.3	14
89	Depletion forces in hard-sphere colloids. <i>Physical Review E</i> , 1999 , 59, R1339-R1342	2.4	14
88	Simplified exactly solvable model for Eamyloid aggregation. <i>Physical Review Letters</i> , 2010 , 105, 108102	7.4	13
87	Assembly of protein tertiary structures from secondary structures using optimized potentials. <i>Proteins: Structure, Function and Bioinformatics</i> , 2003 , 52, 155-65	4.2	13
86	Continuum approach to diffusion-limited-aggregation type of growth. <i>Physical Review E</i> , 1994 , 49, R479	9 5- . ₽ 47	98 3
85	True scale-free networks hidden by finite size effects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	13
84	Incipient criticality in ecological communities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 18714-7	11.5	12
83	Composition waves in confined geometries. <i>Physical Review E</i> , 1993 , 48, R2362-R2365	2.4	12
82	Reconciling cooperation, biodiversity and stability in complex ecological communities. <i>Scientific Reports</i> , 2019 , 9, 5580	4.9	11
81	Diffusion of tagged particles in a crowded medium. <i>Europhysics Letters</i> , 2014 , 107, 20006	1.6	11
80	Symmetry, shape, and order. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 19187-92	11.5	11
79	Proteins and polymers. Journal of Chemical Physics, 2005, 122, 234910	3.9	11
78	Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 17323-17329	11.5	11
77	Phase diagrams for DNA denaturation under stretching forces. <i>Journal of Statistical Mechanics:</i> Theory and Experiment, 2009 , 2009, L04001	1.9	10
76	Comparing models of species abundance (Reply). <i>Nature</i> , 2006 , 441, E1-E2	50.4	10
75	Force dependent transition rates in chemical kinetics models for motor proteins. <i>Journal of Chemical Physics</i> , 2002 , 117, 10339-10349	3.9	10
74	Deciphering the folding kinetics of transmembrane helical proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 14229-34	11.5	10

73	A novel iterative strategy for protein design. <i>Journal of Chemical Physics</i> , 2000 , 112, 2050-2055	3.9	10
72	Role of native-state topology in the stabilization of intracellular antibodies. <i>Biophysical Journal</i> , 2001 , 81, 2935-45	2.9	10
71	sMean-field theory of sandpiles. <i>Physical Review E</i> , 1997 , 55, 1998-2000	2.4	9
70	The origami of life. Journal of Physics Condensed Matter, 2006, 18, 847-888	1.8	9
69	reply: Rivers, blood and transportation networks. <i>Nature</i> , 2000 , 408, 160-160	50.4	9
68	Scattering function for a model of interacting surfaces. <i>Physical Review E</i> , 1993 , 47, 411-418	2.4	9
67	On entropy production in nonequilibrium systems. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2015 , 2015, P08014	1.9	8
66	Entropy production in master equations and FokkerPlanck equations: facing the coarse-graining and recovering the information loss. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2019 , 2019, 104013	1.9	8
65	Anisotropic effective interactions in a coarse-grained tube picture of proteins. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 49, 246-54	4.2	8
64	Strategies for protein folding and design. <i>Annals of Combinatorics</i> , 1999 , 3, 431-450	0.7	8
63	Scaling Properties of Suboptimal Interfaces. <i>Physical Review Letters</i> , 1996 , 77, 5288-5291	7.4	8
62	Archetypes of human cognition defined by time preference for reward and their brain correlates: An evolutionary trade-off approach. <i>Neurolmage</i> , 2019 , 185, 322-334	7.9	8
61	Testing a general approach to assess the degree of disturbance in tropical forests. <i>Journal of Vegetation Science</i> , 2017 , 28, 659-668	3.1	7
60	Scaling Relationships in Agglomeration and Annihilation Models. <i>Physical Review Letters</i> , 1997 , 79, 3278	3- 3 . 4 81	7
59	Structure-based design of model proteins. <i>Proteins: Structure, Function and Bioinformatics</i> , 1998 , 31, 10-	-2 ρ 2	7
58	What determines the spectrum of protein native state structures?. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 63, 273-7	4.2	7
57	Comment on "Revising the distributive networks models of West, Brown and Enquist (1997) and Banavar, Maritan and Rinaldo (1999): Metabolic inequity of living tissues provides clues for the observed allometric scaling rules" by Makarieva, Gorshkov and Li. <i>Journal of Theoretical Biology</i> ,	2.3	7
56	2006 , 239, 391-3 Tubes near the edge of compactness and folded protein structures *. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S1787-S1796	1.8	7

55	Morphology and scaling in continuum ballistic deposition. <i>Physical Review Letters</i> , 1995 , 74, 1783-1786	7.4	7
54	Analysis of noise-induced bimodality in a MichaelisMenten single-step enzymatic cycle. <i>Physica A:</i> Statistical Mechanics and Its Applications, 2013 , 392, 336-342	3.3	6
53	On network form and function. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2004 , 340, 749-755	3.3	6
52	Geometrical model for the native-state folds of proteins. <i>Biophysical Chemistry</i> , 2005 , 115, 289-94	3.5	6
51	Coexistence in neutral theories: interplay of criticality and mild local preferences. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2015 , 2015, P01030	1.9	6
50	Absence of detailed balance in ecology. <i>Europhysics Letters</i> , 2012 , 100, 38002	1.6	5
49	Marginal compactness of protein native structures. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, S297	- \$ 3 0 6	5
48	Prediction of protein secondary structures from conformational biases. <i>Proteins: Structure, Function and Bioinformatics</i> , 2002 , 48, 558-65	4.2	5
47	Elucidation of the disulfide-folding pathway of hirudin by a topology-based approach. <i>Proteins: Structure, Function and Bioinformatics</i> , 2003 , 53, 720-30	4.2	5
46	An optimal procedure to extract interaction potentials for protein folding. <i>Computational Materials Science</i> , 2001 , 20, 305-310	3.2	5
45	Optimal path and directed percolation. <i>Physical Review E</i> , 1996 , 53, R2029-R2032	2.4	5
44	Dynamics of rough surfaces with an arbitrary topology. <i>Physical Review E</i> , 1994 , 49, R937-R940	2.4	5
43	Real-space renormalization group for Langevin dynamics in absence of translational invariance. Journal of Statistical Physics, 1995 , 79, 649-668	1.5	5
42	Entropy production in systems with random transition rates close to equilibrium. <i>Physical Review E</i> , 2017 , 96, 062110	2.4	5
41	The elixir phase of chain molecules. <i>Proteins: Structure, Function and Bioinformatics</i> , 2019 , 87, 176-184	4.2	5
40	Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides. <i>Soft Matter</i> , 2019 , 15, 5596-5613	3.6	4
39	Neutral and niche forces as drivers of species selection. <i>Journal of Theoretical Biology</i> , 2019 , 483, 10996	92.3	4
38	Inferring macro-ecological patterns from local presence/absence data. <i>Oikos</i> , 2019 , 128, 1641-1652	4	4

(2006-2014)

37	Time to Absorption for a Heterogeneous Neutral Competition Model. <i>Journal of Statistical Physics</i> , 2014 , 156, 119-130	1.5	4
36	Protein Sequence and Structure: Is One More Fundamental than the Other?. <i>Journal of Statistical Physics</i> , 2012 , 148, 637-646	1.5	4
35	An exactly solvable coarse-grained model for species diversity. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2012 , 2012, P07017	1.9	4
34	Aggregation of natively folded proteins: a theoretical approach. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 285221	1.8	4
33	What determines the structures of native folds of proteins?. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S1515-S1522	1.8	4
32	Field-induced anti-nematic ordering in assemblies of anisotropically polarizable particles. <i>Europhysics Letters</i> , 2001 , 55, 362-368	1.6	4
31	Scaling behavior in a nonlocal and nonlinear diffusion equation. <i>Physical Review E</i> , 2000 , 62, R5879-82	2.4	4
30	Application of optimal data-based binning method to spatial analysis of ecological datasets. <i>Spatial Statistics</i> , 2016 , 16, 137-151	2.2	4
29	Constrained proteome allocation affects coexistence in models of competitive microbial communities. <i>ISME Journal</i> , 2021 , 15, 1458-1477	11.9	4
28	On the probabilistic nature of the species-area relation. <i>Journal of Theoretical Biology</i> , 2019 , 462, 391-4	107 .3	3
27	Partially folded states of HIV-1 protease: Molecular dynamics simulations and ligand binding. <i>Computational and Theoretical Chemistry</i> , 2006 , 769, 111-121		3
27		2.3	3
	Computational and Theoretical Chemistry, 2006 , 769, 111-121	2.3	
26	Computational and Theoretical Chemistry, 2006 , 769, 111-121 A comment on the protein folds as platonic forms. <i>Journal of Theoretical Biology</i> , 2003 , 223, 263-5	3.3	3
26 25	A comment on the protein folds as platonic forms. <i>Journal of Theoretical Biology</i> , 2003 , 223, 263-5 Phase diagram of the frustrated gauge-invariant Ising model. <i>Physical Review B</i> , 1993 , 48, 932-935	3.3	3
26 25 24	A comment on the protein folds as platonic forms. <i>Journal of Theoretical Biology</i> , 2003 , 223, 263-5 Phase diagram of the frustrated gauge-invariant Ising model. <i>Physical Review B</i> , 1993 , 48, 932-935 Effective Resource Competition Model for Species Coexistence. <i>Physical Review Letters</i> , 2021 , 127, 208	3·3 31 9 .1 ₄	3 3
26 25 24 23	A comment on the protein folds as platonic forms. <i>Journal of Theoretical Biology</i> , 2003 , 223, 263-5 Phase diagram of the frustrated gauge-invariant Ising model. <i>Physical Review B</i> , 1993 , 48, 932-935 Effective Resource Competition Model for Species Coexistence. <i>Physical Review Letters</i> , 2021 , 127, 208 Local sequence-structure relationships in proteins. <i>Protein Science</i> , 2021 , 30, 818-829 New activity pattern in human interactive dynamics. <i>Journal of Statistical Mechanics: Theory and</i>	3·3 3·1 9 .14 6·3	3333

19	Linear One-Step Processes with Artificial Boundaries. <i>Journal of Statistical Physics</i> , 2006 , 125, 491-511	1.5	2
18	Recognition of coarse-grained protein tertiary structure. <i>Proteins: Structure, Function and Bioinformatics</i> , 2004 , 55, 536-47	4.2	2
17	Coarse grained models: the kinetics of motor proteins. Computational Materials Science, 2004, 30, 172-1	7392	2
16	Optimal paths and growth processes. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1999 , 266, 291	1 <i>-3</i> 2. 9 8	2
15	Deterministic fractal models for transport properties, inspired by d=2 random walks. <i>Physical Review A</i> , 1989 , 40, 5299-5304	2.6	2
14	DNA sequence symmetries from randomness: the origin of the Chargaffß second parity rule. <i>Briefings in Bioinformatics</i> , 2021 , 22, 2172-2181	13.4	2
13	Computational approach to the protein-folding problem 2001 , 42, 433		2
12	Emergence of Network Motifs in Deep Neural Networks. <i>Entropy</i> , 2020 , 22,	2.8	1
11	Inverse problem for multivariate time series using dynamical latent variables. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2012 , 391, 3159-3169	3.3	1
10	Nonuniversal diffusion in a chain with deterministic local drifts. <i>Physical Review E</i> , 1993 , 47, R769-R771	2.4	1
9	Building blocks of protein structures IPhysics meets Biology		1
8	Optimal transport from a point-like source. Continuum Mechanics and Thermodynamics, 2020, 32, 1325-1	335	1
7	Building blocks of protein structures: Physics meets biology. <i>Physical Review E</i> , 2021 , 104, 014402	2.4	1
6	Scaling of joint mass and metabolism fluctuations in in silico cell-laden spheroids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
5	Pairing statistics and melting of random DNA oligomers: Finding your partner in superdiverse environments <i>PLoS Computational Biology</i> , 2022 , 18, e1010051	5	O
4	Impurity solvation in a liquid. <i>Journal of Chemical Physics</i> , 1998 , 108, 2104-2110	3.9	
3	Upscaling human activity data: A statistical ecology approach. <i>PLoS ONE</i> , 2021 , 16, e0253461	3.7	
2	Spontaneous dimensional reduction and ground state degeneracy in a simple chain model. <i>Physical Review E</i> , 2021 , 104, L012101	2.4	

Marginally compact phase and ordered ground states in a model polymer with side spheres. Physical Review E, **2021**, 104, L012501

2.4