
Ana Deletic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taking the "Waste―Out of "Wastewater―for Human Water Security and Ecosystem Sustainability. Science, 2012, 337, 681-686.	6.0	513
2	Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study. Water Research, 2008, 42, 3930-3940.	5.3	414
3	Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 2009, 365, 310-321.	2.3	375
4	The first flush load of urban surface runoff. Water Research, 1998, 32, 2462-2470.	5.3	307
5	Simultaneously Tuning Charge Separation and Oxygen Reduction Pathway on Graphitic Carbon Nitride by Polyethylenimine for Boosted Photocatalytic Hydrogen Peroxide Production. ACS Catalysis, 2020, 10, 3697-3706.	5.5	275
6	Variation among plant species in pollutant removal from stormwater in biofiltration systems. Water Research, 2008, 42, 893-902.	5.3	240
7	Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017, 218, 163-173.	10.8	233
8	A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling and Software, 2014, 54, 88-107.	1.9	229
9	Hydraulic and Pollutant Removal Performance of Fine Media Stormwater Filtration Systems. Environmental Science & Technology, 2008, 42, 2535-2541.	4.6	225
10	Interdisciplinarity: How to catalyse collaboration. Nature, 2015, 525, 315-317.	13.7	224
11	Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research, 2007, 41, 1433-1440.	5.3	202
12	The influence of design parameters on clogging of stormwater biofilters: A large-scale column study. Water Research, 2012, 46, 6743-6752.	5.3	186
13	Silver/Reduced Graphene Oxide Hydrogel as Novel Bactericidal Filter for Pointâ€ofâ€Use Water Disinfection. Advanced Functional Materials, 2015, 25, 4344-4351.	7.8	174
14	Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017, 202, 33-41.	10.8	155
15	Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Research, 2012, 46, 2545-2558.	5.3	153
16	Pollution Buildup on Road Surfaces. Journal of Environmental Engineering, ASCE, 2005, 131, 49-59.	0.7	145
17	Performance of grass filters used for stormwater treatment—a field and modelling study. Journal of Hydrology, 2006, 317, 261-275.	2.3	144
18	Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations – A new generation of urban planning tools. Journal of Hydrology, 2017, 550, 355-367.	2.3	138

#	Article	IF	CITATIONS
19	Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Research, 2012, 46, 6661-6670.	5.3	134
20	The enabling institutional context for integrated water management: Lessons from Melbourne. Water Research, 2013, 47, 7300-7314.	5.3	134
21	A sunlight-responsive metal–organic framework system for sustainable water desalination. Nature Sustainability, 2020, 3, 1052-1058.	11.5	131
22	Achieving multiple benefits from stormwater harvesting. Water Science and Technology, 2007, 55, 135-144.	1.2	128
23	A rapid urban flood inundation and damage assessment model. Journal of Hydrology, 2018, 564, 1085-1098.	2.3	124
24	Predicting physical clogging of porous and permeable pavements. Journal of Hydrology, 2013, 481, 48-55.	2.3	118
25	Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems. Water Research, 2007, 41, 2513-2524.	5.3	117
26	Into the deep: Evaluation of SourceTracker for assessment of faecal contamination of coastal waters. Water Research, 2016, 93, 242-253.	5.3	117
27	Redefining the stormwater first flush phenomenon. Water Research, 2010, 44, 2487-2498.	5.3	115
28	Modelling of water and sediment transport over grassed areas. Journal of Hydrology, 2001, 248, 168-182.	2.3	114
29	Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters. Water Research, 2009, 43, 4590-4598.	5.3	114
30	Plant Traits that Enhance Pollutant Removal from Stormwater in Biofiltration Systems. International Journal of Phytoremediation, 2009, 12, 34-53.	1.7	113
31	Optimising nitrogen removal in existing stormwater biofilters: Benefits and tradeoffs of a retrofitted saturated zone. Ecological Engineering, 2013, 51, 75-82.	1.6	111
32	Impact of a submerged zone and a carbon source on heavy metal removal in stormwater biofilters. Ecological Engineering, 2009, 35, 769-778.	1.6	108
33	Designing living walls for greywater treatment. Water Research, 2017, 110, 218-232.	5.3	108
34	Rainwater harvesting for urban flood management – An integrated modelling framework. Water Research, 2020, 171, 115372.	5.3	108
35	Framing water sensitive urban design as part of the urban form: A critical review of tools for best planning practice. Environmental Modelling and Software, 2017, 96, 265-282.	1.9	100
36	Hydrologic impact of urbanization with extensive stormwater infiltration. Journal of Hydrology, 2017, 544, 524-537.	2.3	100

#	Article	IF	CITATIONS
37	Cooperatively modulating reactive oxygen species generation and bacteria-photocatalyst contact over graphitic carbon nitride by polyethylenimine for rapid water disinfection. Applied Catalysis B: Environmental, 2020, 274, 119095.	10.8	97
38	Integrated treatment and recycling of stormwater: a review of Australian practice. Journal of Environmental Management, 2006, 79, 102-113.	3.8	96
39	Reuse of Urban Runoff in Australia: A Review of Recent Advances and Remaining Challenges. Journal of Environmental Quality, 2008, 37, S116-27.	1.0	96
40	Laboratory study on stormwater biofiltration: Nutrient and sediment removal in cold temperatures. Journal of Hydrology, 2010, 394, 507-514.	2.3	95
41	Green walls for greywater reuse: Understanding the role of media on pollutant removal. Ecological Engineering, 2017, 102, 625-635.	1.6	95
42	Hydraulic performance of biofilter systems for stormwater management: Influences of design and operation. Journal of Hydrology, 2009, 376, 16-23.	2.3	93
43	Assessing uncertainties in urban drainage models. Physics and Chemistry of the Earth, 2012, 42-44, 3-10.	1.2	93
44	Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes. Water Science and Technology, 2007, 56, 11-19.	1.2	91
45	Techniques for water and wastewater management: a review of techniques and their integration in planning. Urban Water, 2000, 2, 197-221.	0.5	90
46	Biofilters for Stormwater Harvesting: Understanding the Treatment Performance of Key Metals That Pose a Risk for Water Use. Environmental Science & Technology, 2012, 46, 5100-5108.	4.6	90
47	Pesticide occurrence and spatio-temporal variability in urban run-off across Australia. Water Research, 2017, 115, 245-255.	5.3	90
48	Biofilter design for effective nitrogen removal from stormwater – influence of plant species, inflow hydrology and use of a saturated zone. Water Science and Technology, 2014, 69, 1312-1319.	1.2	88
49	Uncertainties in stormwater E. coli levels. Water Research, 2008, 42, 1812-1824.	5.3	85
50	Stormwater reuse: designing biofiltration systems for reliable treatment. Water Science and Technology, 2007, 55, 201-209.	1.2	84
51	Temporary Storage or Permanent Removal? The Division of Nitrogen between Biotic Assimilation and Denitrification in Stormwater Biofiltration Systems. PLoS ONE, 2014, 9, e90890.	1.1	84
52	Processes and Drivers of Nitrogen Removal in Stormwater Biofiltration. Critical Reviews in Environmental Science and Technology, 2014, 44, 796-846.	6.6	84
53	Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data. Environmental Modelling and Software, 2011, 26, 1225-1239.	1.9	83
54	The validation of stormwater biofilters for micropollutant removal using in situ challenge tests. Ecological Engineering, 2014, 67, 1-10.	1.6	83

#	Article	IF	CITATIONS
55	Sediment transport in urban runoff over grassed areas. Journal of Hydrology, 2005, 301, 108-122.	2.3	82
56	A planning-support tool for spatial suitability assessment of green urban stormwater infrastructure. Science of the Total Environment, 2019, 686, 856-868.	3.9	80
57	Diagnosing transformative change in urban water systems: Theories and frameworks. Global Environmental Change, 2013, 23, 264-280.	3.6	79
58	Urban stormwater harvesting – sensitivity of a storage behaviour model. Environmental Modelling and Software, 2008, 23, 782-793.	1.9	78
59	Sweating the assets – The role of instrumentation, control and automation in urban water systems. Water Research, 2019, 155, 381-402.	5.3	76
60	Modelling of storm wash-off of suspended solids from impervious surfaces. Journal of Hydraulic Research/De Recherches Hydrauliques, 1997, 35, 99-118.	0.7	75
61	Removal of Clostridium perfringens, Escherichia coli and F-RNA coliphages by stormwater biofilters. Ecological Engineering, 2012, 49, 137-145.	1.6	75
62	E. coli removal in laboratory scale stormwater biofilters: Influence of vegetation and submerged zone. Journal of Hydrology, 2014, 519, 814-822.	2.3	73
63	Which species? A decision-support tool to guide plant selection in stormwater biofilters. Advances in Water Resources, 2018, 113, 86-99.	1.7	71
64	Pollutant removal performance of field-scale stormwater biofiltration systems. Water Science and Technology, 2009, 59, 1567-1576.	1.2	70
65	New Insights into the Quality of Urban Storm Water in South Eastern Australia. Journal of Environmental Engineering, ASCE, 2010, 136, 381-390.	0.7	69
66	Toxicity characterization of urban stormwater with bioanalytical tools. Water Research, 2013, 47, 5594-5606.	5.3	69
67	Highly recoverable TiO2–GO nanocomposites for stormwater disinfection. Water Research, 2016, 94, 363-370.	5.3	66
68	Escherichia coli in urban stormwater: explaining their variability. Water Science and Technology, 2007, 56, 27-34.	1.2	65
69	Assessment of clogging phenomena in granular filter media used for stormwater treatment. Journal of Hydrology, 2014, 512, 518-527.	2.3	62
70	A Cellular Automata Fast Flood Evaluation (CAâ€ffé) Model. Water Resources Research, 2019, 55, 4936-4953.	1.7	62
71	Impact of input data uncertainties on urban stormwater model parameters. Water Science and Technology, 2009, 60, 1545-1554.	1.2	59
72	ls stormwater harvesting beneficial to urban waterway environmental flows?. Water Science and Technology, 2007, 55, 265-272.	1.2	56

#	Article	IF	CITATIONS
73	Source tracking using microbial community fingerprints: Method comparison with hydrodynamic modelling. Water Research, 2017, 109, 253-265.	5.3	56
74	Accumulation of heavy metals in stormwater bioretention media: A field study of temporal and spatial variation. Journal of Hydrology, 2018, 567, 721-731.	2.3	53
75	Modelling transitions in urban water systems. Water Research, 2017, 126, 501-514.	5.3	52
76	Evaluating Escherichia coli removal performance in stormwater biofilters: a laboratory-scale study. Water Science and Technology, 2012, 66, 1132-1138.	1.2	48
77	Optimisation of lightweight green wall media for greywater treatment and reuse. Building and Environment, 2018, 131, 99-107.	3.0	48
78	What drives the location choice for water sensitive infrastructure in Melbourne, Australia?. Landscape and Urban Planning, 2018, 175, 92-101.	3.4	48
79	An <i>in situ</i> assembled WO ₃ –TiO ₂ vertical heterojunction for enhanced Z-scheme photocatalytic activity. Nanoscale, 2020, 12, 8775-8784.	2.8	47
80	Designing green walls for greywater treatment: The role of plants and operational factors on nutrient removal. Ecological Engineering, 2019, 130, 184-195.	1.6	46
81	Modelling input of fine granular sediment into drainage systems via gully-pots. Water Research, 2000, 34, 3836-3844.	5.3	45
82	Evaluating the reliability of stormwater treatment systems under various future climate conditions. Journal of Hydrology, 2019, 568, 57-66.	2.3	44
83	Filter media for stormwater treatment and recycling: the influence of hydraulic properties of flow on pollutant removal. Water Science and Technology, 2006, 54, 263-271.	1.2	43
84	Sustainable urban water futures in developing countries: the centralised, decentralised or hybrid dilemma. Urban Water Journal, 2015, 12, 543-558.	1.0	43
85	Retention and survival of E. coli in stormwater biofilters: Role of vegetation, rhizosphere microorganisms and antimicrobial filter media. Ecological Engineering, 2017, 102, 166-177.	1.6	43
86	Analysis of institutional work on innovation trajectories in water infrastructure systems of Melbourne, Australia. Environmental Innovation and Societal Transitions, 2015, 15, 42-64.	2.5	42
87	Removal of E. coli from urban stormwater using antimicrobial-modified filter media. Journal of Hazardous Materials, 2014, 271, 73-81.	6.5	41
88	Evaluation of sustainable electron donors for nitrate removal in different water media. Water Research, 2015, 85, 487-496.	5.3	41
89	Identifying heavy metal levels in historical flood water deposits using sediment cores. Water Research, 2016, 105, 34-46.	5.3	41
90	The influence of temperature on nutrient treatment efficiency in stormwater biofilter systems. Water Science and Technology, 2007, 56, 83-91.	1.2	40

#	Article	IF	CITATIONS
91	A new saturated/unsaturated model for stormwater infiltration systems. Hydrological Processes, 2008, 22, 4838-4849.	1.1	40
92	Escherichia coli removal in copper-zeolite-integrated stormwater biofilters: Effect of vegetation, operational time, intermittent drying weather. Ecological Engineering, 2016, 90, 234-243.	1.6	39
93	A planning algorithm for quantifying decentralised water management opportunities in urban environments. Water Science and Technology, 2013, 68, 1857-1865.	1.2	38
94	Stormwater biofilter treatment model (MPiRe) for selected micro-pollutants. Water Research, 2016, 89, 180-191.	5.3	38
95	Development of a coupled pathogen-hydrologic catchment model. Journal of Hydrology, 2006, 328, 467-480.	2.3	37
96	Assessment of Impact of Filter Design Variables on Clogging in Stormwater Filters. Water Resources Management, 2014, 28, 1873-1885.	1.9	37
97	Dual-mode stormwater-greywater biofilters: The impact of alternating water sources on treatment performance. Water Research, 2019, 159, 521-537.	5.3	37
98	Real time control of biofilters delivers stormwater suitable for harvesting and reuse. Water Research, 2020, 169, 115257.	5.3	37
99	Stormwater quality models: performance and sensitivity analysis. Water Science and Technology, 2010, 62, 837-843.	1.2	36
100	Revisiting land use classification and spatial aggregation for modelling integrated urban water systems. Landscape and Urban Planning, 2015, 143, 43-55.	3.4	36
101	Effective treatment of greywater via green wall biofiltration and electrochemical disinfection. Water Research, 2020, 185, 116228.	5.3	36
102	Impacts of measured data uncertainty on urban stormwater models. Journal of Hydrology, 2014, 508, 28-42.	2.3	35
103	Stormwater disinfection using electrochemical oxidation: A feasibility investigation. Water Research, 2018, 140, 301-310.	5.3	35
104	Predicting long term removal of heavy metals from porous pavements for stormwater treatment. Water Research, 2018, 142, 236-245.	5.3	35
105	Green wall height and design optimisation for effective greywater pollution treatment and reuse. Journal of Environmental Management, 2020, 261, 110173.	3.8	35
106	Hydraulic performance of biofilters for stormwater management: first lessons from both laboratory and field studies. Water Science and Technology, 2007, 56, 93-100.	1.2	34
107	Biofiltration for stormwater harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions. Journal of Hydrology, 2016, 537, 248-259.	2.3	34
108	Phosphorus Fate and Dynamics in Greywater Biofiltration Systems. Environmental Science & Technology, 2017, 51, 2280-2287.	4.6	34

#	Article	IF	CITATIONS
109	Quantifying the benefits of stormwater harvesting for pollution mitigation. Water Research, 2020, 171, 115395.	5.3	34
110	Many roads to Rome: The emergence of pathways from patterns of change through exploratory modelling of sustainability transitions. Environmental Modelling and Software, 2016, 85, 279-292.	1.9	33
111	Modelling Interactions Between Lot-Scale Decentralised Water Infrastructure and Urban Form – a Case Study on Infiltration Systems. Water Resources Management, 2013, 27, 4845-4863.	1.9	32
112	Technological advancements towards the net-zero energy communities: A review on 23 case studies around the globe. Solar Energy, 2021, 224, 1107-1126.	2.9	32
113	Modeling of Sediment Transport through Stormwater Gravel Filters over Their Lifespan. Environmental Science & Technology, 2007, 41, 8099-8103.	4.6	31
114	Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?. Journal of Hydrology, 2018, 559, 307-314.	2.3	31
115	Retention of heavy metals by stormwater filtration systems: breakthrough analysis. Water Science and Technology, 2011, 64, 1913-1919.	1.2	30
116	Integrated modelling of stormwater treatment systems uptake. Water Research, 2018, 142, 301-312.	5.3	30
117	Understanding spatiotemporal variability of in-stream water quality in urban environments – A case study of Melbourne, Australia. Journal of Environmental Management, 2019, 246, 203-213.	3.8	30
118	Escherichia coli concentrations and loads in an urbanised catchment: The Yarra River, Australia. Journal of Hydrology, 2013, 497, 51-61.	2.3	29
119	Stable copper-zeolite filter media for bacteria removal in stormwater. Journal of Hazardous Materials, 2014, 273, 222-230.	6.5	29
120	Towards water sensitive cities in Asia: an interdisciplinary journey. Water Science and Technology, 2017, 76, 1150-1157.	1.2	29
121	Building effective Planning Support Systems for green urban water infrastructure—Practitioners' perceptions. Environmental Science and Policy, 2018, 89, 153-162.	2.4	29
122	Model output uncertainty of a coupled pathogen indicator–hydrologic catchment model due to input data uncertainty. Environmental Modelling and Software, 2009, 24, 322-328.	1.9	28
123	Modelling of stormwater biofilters under random hydrologic variability: a case study of a car park at Monash University, Victoria (Australia). Hydrological Processes, 2012, 26, 3416-3424.	1.1	28
124	Assessment of the Impact of Stormwater Characteristics on Clogging in Stormwater Filters. Water Resources Management, 2015, 29, 1031-1048.	1.9	28
125	Assessment of sampling strategies for estimation of site mean concentrations of stormwater pollutants. Water Research, 2018, 129, 297-304.	5.3	28
126	Modelling urban water management transitions: A case of rainwater harvesting. Environmental Modelling and Software, 2018, 105, 270-285.	1.9	28

#	Article	IF	CITATIONS
127	Machine learning approaches for predicting the performance of stormwater biofilters in heavy metal removal and risk mitigation. Water Research, 2021, 200, 117273.	5.3	28
128	Assessing water retention and correlation to climate conditions of five plant species in greywater treating green walls. Water Research, 2019, 167, 115092.	5.3	27
129	A spatial planning-support system for generating decentralised urban stormwater management schemes. Science of the Total Environment, 2020, 726, 138282.	3.9	27
130	Evaluation of Techniques for Measuring Microbial Hazards in Bathing Waters: A Comparative Study. PLoS ONE, 2016, 11, e0155848.	1.1	27
131	Modelling characteristics of the urban form to support water systems planning. Environmental Modelling and Software, 2018, 104, 249-269.	1.9	26
132	The impact of stormwater biofilter design and operational variables on nutrient removal - a statistical modelling approach. Water Research, 2021, 188, 116486.	5.3	26
133	Modelling wet weather sediment removal by stormwater constructed wetlands: Insights from a laboratory study. Journal of Hydrology, 2007, 338, 285-296.	2.3	25
134	A Diagnostic Procedure for Transformative Change Based on Transitions, Resilience, and Institutional Thinking. Ecology and Society, 2013, 18, .	1.0	25
135	Analysis of parameter uncertainty of a flow and quality stormwater model. Water Science and Technology, 2009, 60, 717-725.	1.2	24
136	Survival of Escherichia coli in stormwater biofilters. Environmental Science and Pollution Research, 2014, 21, 5391-5401.	2.7	24
137	Environmental monitoring of waterborne Campylobacter: evaluation of the Australian standard and a hybrid extraction-free MPN-PCR method. Frontiers in Microbiology, 2015, 6, 74.	1.5	24
138	Ultrathin titanium oxide nanosheets film with memory bactericidal activity. Nanoscale, 2016, 8, 18050-18056.	2.8	24
139	Sediment behaviour in grass filter strips. Water Science and Technology, 1999, 39, 129.	1.2	23
140	Development and testing of a model for Micro-Organism Prediction in Urban Stormwater (MOPUS). Journal of Hydrology, 2011, 409, 236-247.	2.3	23
141	Stormwater pollutant runoff: A stochastic approach. Advances in Water Resources, 2014, 74, 148-155.	1.7	23
142	Surrogates for herbicide removal in stormwater biofilters. Water Research, 2015, 81, 64-71.	5.3	23
143	Electrochemical oxidation disinfects urban stormwater: Major disinfection mechanisms and longevity tests. Science of the Total Environment, 2019, 646, 1440-1447.	3.9	23
144	Water Pollution Control for Sustainable Development. Engineering, 2019, 5, 839-840.	3.2	23

#	Article	IF	CITATIONS
145	How well do stormwater green infrastructure respond to changing climatic conditions?. Journal of Hydrology, 2021, 603, 126887.	2.3	23
146	A possible mechanism for soil moisture bimodality in humidâ€land environments. Geophysical Research Letters, 2009, 36, .	1.5	22
147	Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu. Ambio, 2014, 43, 1093-1111.	2.8	22
148	The effect of intermittent drying and wetting stormwater cycles on the nutrient removal performances of two vegetated biofiltration designs. Chemosphere, 2021, 267, 129294.	4.2	22
149	Modelling cities and water infrastructure dynamics. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 301-308.	0.4	21
150	Seasonal operation of dual-mode biofilters: The influence of plant species on stormwater and greywater treatment. Science of the Total Environment, 2020, 715, 136680.	3.9	21
151	Can we model the implementation of water sensitive urban design in evolving cities?. Water Science and Technology, 2015, 71, 149-156.	1.2	20
152	Stormwater constructed wetlands: A source or a sink of Campylobacter spp Water Research, 2018, 131, 218-227.	5.3	19
153	Sediment cores as archives of historical changes in floodplain lake hydrology. Science of the Total Environment, 2016, 544, 1008-1019.	3.9	18
154	Current Stormwater Harvesting Guidelines Are Inadequate for Mitigating Risk from <i>Campylobacter</i> During Nonpotable Reuse Activities. Environmental Science & Technology, 2017, 51, 12498-12507.	4.6	18
155	Simulating flood risk under non-stationary climate and urban development conditions – Experimental setup for multiple hazards and a variety of scenarios. Environmental Modelling and Software, 2018, 102, 155-171.	1.9	18
156	Nitrogen Removal in Greywater Living Walls: Insights into the Governing Mechanisms. Water (Switzerland), 2018, 10, 527.	1.2	17
157	New prebiotic chemistry inspired filter media for stormwater/greywater disinfection. Journal of Hazardous Materials, 2019, 378, 120749.	6.5	17
158	A twoâ€dimensional model of hydraulic performance of stormwater infiltration systems. Hydrological Processes, 2013, 27, 2785-2799.	1.1	16
159	Stormwater herbicides removal with a solar-driven advanced oxidation process: A feasibility investigation. Water Research, 2021, 190, 116783.	5.3	16
160	Calibration and Sensitivity Analysis of Urban Drainage Models: Music Rainfall/Runoff Module and a Simple Stormwater Quality Model. Australian Journal of Water Resources, 2011, 15, 85-94.	1.6	15
161	Performance of envissâ,,¢ stormwater filters: results of a laboratory trial. Water Science and Technology, 2012, 66, 719-727.	1.2	15
162	Constructing ultrathin film with "memory―photocatalytic activity from monolayered tungstate nanodots. Chemical Communications, 2016, 52, 6985-6988.	2.2	15

#	Article	IF	CITATIONS
163	Effect of environmental parameters on pathogen and faecal indicator organism concentrations within an urban estuary. Estuarine, Coastal and Shelf Science, 2016, 174, 18-26.	0.9	15
164	Stormwater Biofilters as Barriers against Campylobacter jejuni, Cryptosporidium Oocysts and Adenoviruses; Results from a Laboratory Trial. Water (Switzerland), 2017, 9, 949.	1.2	15
165	Electrochemical oxidation for stormwater disinfection: How does real stormwater chemistry impact on pathogen removal and disinfection by-products level?. Chemosphere, 2018, 213, 226-234.	4.2	15
166	Evaluating Escherichia coli removal performance in stormwater biofilters: a preliminary modelling approach. Water Science and Technology, 2013, 67, 2467-2475.	1.2	14
167	Urban drainage models – simplifying uncertainty analysis for practitioners. Water Science and Technology, 2013, 68, 2136-2143.	1.2	14
168	Statistical evaluation and optimisation of stormwater quality monitoring programmes. Water Science and Technology, 2007, 56, 1-9.	1.2	13
169	Stormwater biofilter treatment model for faecal microorganisms. Science of the Total Environment, 2018, 630, 992-1002.	3.9	13
170	Biotreatment technologies for stormwater harvesting: critical perspectives. Current Opinion in Biotechnology, 2019, 57, 191-196.	3.3	13
171	Testing of new stormwater pollution build-up algorithms informed by a genetic programming approach. Journal of Environmental Management, 2019, 241, 12-21.	3.8	13
172	A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks. Sensors, 2021, 21, 3056.	2.1	13
173	Pollutant removal performance of field scale dual-mode biofilters for stormwater, greywater, and groundwater treatment. Ecological Engineering, 2021, 163, 106192.	1.6	13
174	A socio-technical model to explore urban water systems scenarios. Water Science and Technology, 2013, 68, 714-721.	1.2	12
175	Modelling shallow and narrow urban salt-wedge estuaries: Evaluation of model performance and sensitivity to optimise input data collection. Estuarine, Coastal and Shelf Science, 2019, 217, 9-27.	0.9	12
176	Machine learning for accelerating <scp>2D</scp> flood models: Potential and challenges. Hydrological Processes, 2021, 35, e14064.	1.1	12
177	Modelling a â€~business case' for blue-green infrastructure: lessons from the Water Sensitive Cities Toolkit. Blue-Green Systems, 2020, 2, 383-403.	0.6	12
178	Hydraulic and treatment performance of pervious pavements under variable drying and wetting regimes. Water Science and Technology, 2011, 64, 1692-1699.	1.2	11
179	Predicting Between-Event Variability of <i>Escherichia coli</i> in Urban Storm Water. Journal of Environmental Engineering, ASCE, 2013, 139, 728-737.	0.7	11
180	Presence and survival of culturable Campylobacter spp. and Escherichia coli in a temperate urban estuary. Science of the Total Environment, 2016, 569-570, 1201-1211.	3.9	11

#	Article	lF	CITATIONS
181	Sensitivity testing of a coupled Escherichia coli – Hydrologic catchment model. Journal of Hydrology, 2007, 338, 161-173.	2.3	10
182	Stormwater biofilters: A new validation modelling tool. Ecological Engineering, 2016, 87, 53-61.	1.6	10
183	Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?. Environmental Science & Technology, 2017, 51, 3703-3713.	4.6	10
184	Biofilters as effective pathogen barriers for greywater reuse. Ecological Engineering, 2019, 138, 79-87.	1.6	10
185	Photo-electrochemical oxidation herbicides removal in stormwater: Degradation mechanism and pathway investigation. Journal of Hazardous Materials, 2022, 436, 129239.	6.5	10
186	Testing and Sensitivity of a Simple Method for Predicting Urban Pollutant Loads. Journal of Environmental Engineering, ASCE, 2011, 137, 782-789.	0.7	9
187	Integrated conceptual modelling of faecal contamination in an urban estuary catchment. Water Science and Technology, 2015, 72, 1472-1480.	1.2	9
188	Methodologies for Pre-Validation of Biofilters and Wetlands for Stormwater Treatment. PLoS ONE, 2015, 10, e0125979.	1.1	9
189	Uncertainties in historical pollution data from sedimentary records from an Australian urban floodplain lake. Journal of Hydrology, 2018, 560, 560-571.	2.3	9
190	Enhancing <i>Escherichia coli</i> removal in stormwater biofilters with a submerged zone: balancing the impact of vegetation, filter media and extended dry weather periods. Urban Water Journal, 2019, 16, 460-468.	1.0	9
191	Biological Clogging in Storm Water Filters. Journal of Environmental Engineering, ASCE, 2015, 141, 04014057.	0.7	8
192	Validation of stormwater biofilters using in-situ columns. Science of the Total Environment, 2016, 544, 48-55.	3.9	8
193	Experimental Study of LNAPL Migration in the Vicinity of a Steep Groundwater Table. Soils and Foundations, 2006, 46, 271-280.	1.3	7
194	The development of a novel approach for assessment of the first flush in urban stormwater discharges. Water Science and Technology, 2010, 61, 2681-2688.	1.2	7
195	Zinc-sulphate-heptahydrate coated activated carbon for microbe removal from stormwater. Water Science and Technology, 2012, 66, 1582-1589.	1.2	7
196	Tidal fluctuations influence E. coli concentrations in urban estuaries. Marine Pollution Bulletin, 2017, 119, 226-230.	2.3	7
197	Validation and uncertainty analysis of a stormwater biofilter treatment model for faecal microorganisms. Science of the Total Environment, 2020, 709, 136157.	3.9	7
198	The multi-faceted nature of Blue-Green Systems coming to light. Blue-Green Systems, 2020, 2, 186-187.	0.6	7

#	Article	IF	CITATIONS
199	Advancing the Sponge City Agenda: Evaluation of 22 plant species across a broad range of life forms for stormwater management. Ecological Engineering, 2022, 175, 106501.	1.6	7
200	The comparative performance of lightweight green wall media for the removal of xenobiotic organic compounds from domestic greywater. Water Research, 2022, 221, 118774.	5.3	7
201	Sensitivity analysis of an urban stormwater microorganism model. Water Science and Technology, 2010, 62, 1393-1400.	1.2	6
202	Stormwater in urban areas. Water Research, 2012, 46, 6588.	5.3	6
203	Digging up the dirty past: evidence for stormwater's contribution to pollution of an urban floodplain lake. Marine and Freshwater Research, 2015, 66, 596.	0.7	6
204	Microlayer enrichment in natural treatment systems: linking the surface microlayer to urban water quality. Wiley Interdisciplinary Reviews: Water, 2016, 3, 269-281.	2.8	6
205	Conceptual modelling of E. coli in urban stormwater drains, creeks and rivers. Journal of Hydrology, 2017, 555, 129-140.	2.3	6
206	Spatial variability of E. coli in an urban salt-wedge estuary. Marine Pollution Bulletin, 2017, 114, 114-122.	2.3	6
207	Designing Dry Swales for Stormwater Quality Improvement Using the Aberdeen Equation. Journal of Sustainable Water in the Built Environment, 2020, 6, 05019004.	0.9	6
208	Preliminary studies of the development of a clogging prediction method for stormwater infiltration systems. Water Practice and Technology, 2007, 2, .	1.0	5
209	Uncertainty analysis in urban drainage modelling: should we break our back for normally distributed residuals?. Water Science and Technology, 2013, 68, 1271-1279.	1.2	5
210	Receptivity to sustainable urban water management in the South West Pacific. Journal of Water and Climate Change, 2014, 5, 244-258.	1.2	5
211	<i>Escherichia coli</i> survival and transfer in estuarine bed sediments. River Research and Applications, 2018, 34, 606-614.	0.7	5
212	Can we use a simple modelling tool to validate stormwater biofilters for herbicides treatment?. Urban Water Journal, 2019, 16, 412-420.	1.0	5
213	Copper-zeolite integrated stormwater biofilter for nutrient removal – the impact of intermittent wetting and drying conditions. Blue-Green Systems, 2020, 2, 352-363.	0.6	5
214	Calibration and sensitivity analysis of a novel water flow and pollution model for future city planning: Future Urban Stormwater Simulation (FUSS). Water Science and Technology, 2022, 85, 961-969.	1.2	5
215	Using sediment cores to establish targets for the remediation of aquatic environments. Water Science and Technology, 2016, 73, 628-635.	1.2	4
216	Illicit discharge detection in stormwater drains using an Arduino-based low-cost sensor network. Water Science and Technology, 2022, 85, 1372-1383.	1.2	4

#	Article	IF	CITATIONS
217	Planning support systems for strategic implementation of nature-based solutions in the global south: Current role and future potential in Indonesia. Cities, 2022, 126, 103693.	2.7	4
218	Salmonella enterica Serovar Typhimurium and Escherichia coli Survival in Estuarine Bank Sediments. International Journal of Environmental Research and Public Health, 2018, 15, 2597.	1.2	3
219	Salmonella from a Microtidal Estuary Are Capable of Invading Human Intestinal Cell Lines. Microbial Ecology, 2020, 79, 259-270.	1.4	3
220	Modelling the clogging of a field filtration system used for stormwater harvesting. Environmental Science: Water Research and Technology, 2020, 6, 993-1003.	1.2	3
221	<i>Campylobacter</i> in an Urban Estuary: Public Health Insights from Occurrence, HeLa Cytotoxicity, and Caco-2 Attachment Cum Invasion. Microbes and Environments, 2019, 34, 436-445.	0.7	2
222	Modelling to Support the Planning of Sustainable Urban Water Systems. Green Energy and Technology, 2019, , 10-19.	0.4	1
223	Assessing Uncertainty of a Biofilter Micropollutant Transport Model MPiRe. Green Energy and Technology, 2019, , 246-250.	0.4	0