
Hiroaki Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088503/publications.pdf Version: 2024-02-01

HIDOARI SUZURI

#	Article	IF	CITATIONS
1	Simple manual roller pump-driven valve-free microfluidic solution exchange system for urgent bioassay. RSC Advances, 2022, 12, 2938-2946.	3.6	2
2	Bipolar Electrode Arrays for Chemical Imaging and Multiplexed Sensing. ACS Omega, 2022, 7, 20298-20305.	3.5	9
3	Selectively excited bimodal interferometer for highly sensitive refractive index sensing. Optical Engineering, 2021, 60, .	1.0	0
4	Microdevice with an Integrated Clark-Type Oxygen Electrode for the Measurement of the Respiratory Activity of Cells. Analytical Chemistry, 2021, 93, 5577-5585.	6.5	7
5	Electrochemical Circuits for Autonomous Microfluidic Solution Processing. ECS Meeting Abstracts, 2021, MA2021-01, 1609-1609.	0.0	0
6	Control of Interfacial Potentials and Redox Reactions on Bipolar Electrodes Using Ag/AgCl. Electroanalysis, 2021, 33, 2123-2127.	2.9	4
7	Wired Microfabricated Electrochemical Systems. Analytical Chemistry, 2021, 93, 12655-12663.	6.5	3
8	Sonochemical synthesis of magnetic Fe3O4/graphene nanocomposites for label-free electrochemical biosensors. Journal of Materials Science: Materials in Electronics, 2020, 31, 15381-15393.	2.2	17
9	Switchable Microvalves Employing a Conducting Polymer and Their Automatic Operation in Conjunction with Micropumps with a Superabsorbent Polymer. ACS Applied Materials & Interfaces, 2020, 12, 37741-37749.	8.0	8
10	Microfabricated electrochemical sensing devices. Lab on A Chip, 2020, 20, 1358-1389.	6.0	62
11	Hybrid plasmon waveguide for highly sensitive biosensing. Optical Engineering, 2020, 59, .	1.0	1
12	Microfluidic Devices Using Electrochemical Micropumps and Microvalves for Autonomous Solution Processing. ECS Meeting Abstracts, 2020, MA2020-02, 3378-3378.	0.0	0
13	Control of Reactions on Bipolar Electrodes Using Ion-Selective Membranes. ECS Meeting Abstracts, 2020, MA2020-02, 3371-3371.	0.0	0
14	Microdevice for the Measurement of Respiratory Activity of Cells. ECS Meeting Abstracts, 2020, MA2020-02, 3394-3394.	0.0	0
15	Perforated Bimodal Interferometric Biosensor for Affinity Sensing. Advanced Materials Technologies, 2019, 4, 1800533.	5.8	3
16	Onâ€site rapid detection of antibacterial activity of neutrophils using freezeâ€dried bacteria. Medical Devices & Sensors, 2019, 2, e10030.	2.7	2
17	Active Junctions to Improve Sensitivity and Detection Limit of a Microdevice Based on Coulometry Coupled with Silver Metallization. Electroanalysis, 2019, 31, 1630-1634.	2.9	4
18	The reduced bactericidal activity of neutrophils as an incisive indicator of water-immersion restraint stress and impaired exercise performance in mice. Scientific Reports, 2019, 9, 4562.	3.3	8

HIROAKI SUZUKI

#	Article	IF	CITATIONS
19	A simple micropump based on a freeze-dried superabsorbent polymer for multiplex solution processing in disposable devices. Royal Society Open Science, 2019, 6, 182213.	2.4	8
20	Mass-producible disposable needle-type ion-selective electrodes for plant research. RSC Advances, 2019, 9, 30309-30316.	3.6	3
21	Microfluidic device with a push–pull sequential solution-exchange function for affinity sensing. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	2
22	Microfluidic device for high-sensitivity coulometric detection of proteins. Sensors and Actuators B: Chemical, 2018, 256, 835-838.	7.8	9
23	Silicon nitride directional coupler interferometer for surface sensing. Optical Engineering, 2017, 56, 017101.	1.0	7
24	Self-Propelled Metal–Polymer Hybrid Micromachines with Bending and Rotational Motions. ACS Applied Materials & Interfaces, 2017, 9, 21355-21361.	8.0	23
25	Microfabricated directional coupler-based biosensor for afinity sensing. , 2017, , .		0
26	Microfluidic device coupled with a microfabricated oxygen electrode for the measurement of bactericidal activity of neutrophil-like cells. Analytica Chimica Acta, 2017, 985, 1-6.	5.4	13
27	Electrochemical microdevices for proteins based on coulometry coupled with silver metallization. , 2017, , .		1
28	Review of Microfabricated Electrochemical Devices for the Analysis of Cell Functions and Biological Samples. Electronics and Communications in Japan, 2017, 100, 51-58.	0.5	2
29	Self-deformable micro/nanomotors with organic-inorganic hybrid structures. , 2016, , .		0
30	Microfluidic Separation of Redox Reactions for Coulometry Based on Metallization at the Mixed Potential. Analytical Chemistry, 2016, 88, 9427-9434.	6.5	9
31	Programmed Transport and Release of Cells by Self-Propelled Micromotors. Langmuir, 2016, 32, 9381-9388.	3.5	27
32	Switchable Hydrophobic Valve for Controlled Microfluidic Processing. ChemPhysChem, 2016, 17, 817-821.	2.1	20
33	Photonic Lab-on-a-Chip for Rapid Cytokine Detection. ACS Sensors, 2016, 1, 979-986.	7.8	21
34	Microdevice with integrated multi-enzyme sensors for the measurement of pork freshness. Sensors and Actuators B: Chemical, 2016, 235, 535-540.	7.8	8
35	Electrochemical Bubble-Based Bidirectional Microfluidic Transport. ACS Sensors, 2016, 1, 190-196.	7.8	5
36	Review of Microfabricated Electrochemical Devices for the Analysis of Cell Functions and Biological Samples. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 250-255.	0.1	0

#	Article	IF	CITATIONS
37	Review of Microfluidic Devices for On-Chip Chemical Sensing. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 244-249.	0.1	0
38	A micro IrO potentiometric sensor for direct determination of organophosphate pesticides. Sensors and Actuators B: Chemical, 2015, 220, 859-863.	7.8	24
39	On-chip processing of droplets for surface plasmon resonance analysis. Sensors and Actuators B: Chemical, 2014, 190, 975-981.	7.8	2
40	Microdevices for Point of Care. Journal of the Institute of Electrical Engineers of Japan, 2014, 134, 144-147.	0.0	0
41	A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics. Analyst, The, 2013, 138, 1000.	3.5	30
42	Electrochemical microdevice for on-site determination of ricefreshness. Biosensors and Bioelectronics, 2013, 42, 640-645.	10.1	6
43	Microfluidic ion-responsive channels based on electrowetting. Sensors and Actuators B: Chemical, 2013, 177, 929-935.	7.8	7
44	Microdevice for On-Site Fish Freshness Checking Based on <i>K</i> -Value Measurement. Analytical Chemistry, 2013, 85, 10962-10968.	6.5	38
45	Electrochemical Microdevices. , 2013, , 483-494.		1
46	Review of Microdevices for Food Quality Inspection. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 129-134.	0.1	0
47	Processing of nanolitre liquid plugs for microfluidic cell-based assays. Science and Technology of Advanced Materials, 2012, 13, 064201.	6.1	2
48	Electrochemical microdevice for the determination of the minimum inhibitory concentration of antibiotics. , 2012, , .		3
49	Microfluidic device for freshness or ageing determination of food materials. , 2012, , .		0
50	٦ؾڵؚ؇ػٚۿٙٲڋۿٙۥۣۿڕؾۿٲ؆ۿٲ؆ۿٲۥۿٲۥۿٲۥۿٲۥۿٵٙ؇ۿۥڟٲڋۿۥڲۿٲڷۿۥۧۿۥٵۿڹ؋؇؞ۜۘۿ؊ڷۿ؋؇؊ۿ؆؊ۿ؆؊ۿ؆ٵۿ؆ٵۿ؆ٵۿ؆ٵ؆؆؆ڡ	12, 180 , 424	4-4028.
51	Measurement of enzyme activity using a plug-based electrochemical microdevice. , 2012, , .		0
52	Droplet-based microfluidic sensing system for rapid fish freshness determination. Sensors and Actuators B: Chemical, 2012, 171-172, 619-626.	7.8	33
53	On-chip diagnosis of subclinical mastitis in cows by electrochemical measurement of neutrophil activity in milk. Lab on A Chip, 2012, 12, 1309.	6.0	20
54	Miniaturized shape memory alloy pumps for stepping microfluidic transport. Sensors and Actuators B: Chemical, 2012, 165, 157-163.	7.8	39

#	Article	IF	CITATIONS
55	Electrochemical Microdevices for Point-of-Care Testing. IEEJ Transactions on Sensors and Micromachines, 2012, 132, 371-376.	0.1	0
56	Dynamic feedback regulation of the potential of a microfabricated liquid-junction Ag/AgCl reference electrode. Sensors and Actuators B: Chemical, 2011, 156, 228-235.	7.8	5
57	Continuous Monitoring of Ammonia Removal Activity and Observation of Morphology of Microbial Complexes in a Microdevice. Applied and Environmental Microbiology, 2011, 77, 4253-4255.	3.1	17
58	Rapid Diagnostic Device for Subclinical Mastitis Based on Electrochemical Detection of Superoxide Produced from Neutrophils in Fresh Milk. IEEJ Transactions on Sensors and Micromachines, 2011, 131, 218-222.	0.1	4
59	Current Status of Research and Development of Devices Based on Electrowetting. IEEJ Transactions on Sensors and Micromachines, 2011, 131, 316-321.	0.1	1
60	ã,₿ªãf³é›»æ¥µã®å¾®å°åŒ−ã•ãã®ãfžã,₿,¯ãfãf‡ãfã,₿,¹ã;ã®å¿œç"¨. Electrochemistry, 2010, 78, 692-697.	1.4	0
61	Automatic electrochemical sequential processing in a microsystem for urea detection. Sensors and Actuators B: Chemical, 2010, 144, 146-152.	7.8	11
62	Multi-point ATP sensing for rapid precise fish freshness check. , 2010, , .		0
63	Coulometric Detection of Components in Liquid Plugs by Microfabricated Flow Channel and Electrode Structures. Analytical Chemistry, 2010, 82, 8725-8732.	6.5	47
64	Autonomous Microfluidic Control by Chemically Actuated Micropumps and Its Application to Chemical Analyses. Analytical Chemistry, 2010, 82, 6870-6876.	6.5	16
65	Programmed autonomous valve operation based on electrowetting on composite single electrodes. , 2010, , .		0
66	Electrochemical microsystem for continuous monitoring of nitrification activity of microbial complexes. , 2010, , .		0
67	Towards microsystems for automatic acquisition of in vivo gastrointestinal information. Journal of Applied Physics, 2009, 105, 102013.	2.5	4
68	Rapid diagnostic device for mastitis based on electrochemical detection of superoxide produced from neutrophils in fresh milk. , 2009, , .		0
69	Automatic processing of solutions for chemical analyses using an electrowetting-based valve and an integrated cell. , 2009, , .		0
70	Autonomous microfluidic transport using electrowetting-based valves and integrated cells. Applied Physics Letters, 2009, 95, .	3.3	11
71	Electrowetting-based pH- and biomolecule-responsive valves and pH filters. Biosensors and Bioelectronics, 2009, 24, 2171-2176.	10.1	20
72	Evaporative concentration of a microdroplet for highly sensitive detection of trace heavy metal ions in real samples. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, 365-371.	1.4	3

#	Article	lF	CITATIONS
73	Biochip with integrated pumps for plug-based sequential exchange of solutions. Sensors and Actuators B: Chemical, 2009, 140, 649-655.	7.8	11
74	On-chip culturing of hepatocytes and monitoring their ammoniametabolism. Lab on A Chip, 2009, 9, 35-37.	6.0	28
75	Electrochemical techniques for microfluidic applications. Electrophoresis, 2008, 29, 1787-1800.	2.4	74
76	Electrowetting-based valve for the control of the capillary flow. Journal of Applied Physics, 2008, 103, .	2.5	36
77	Automatic Electrochemical Micro-pH-Stat for Biomicrosystems. Analytical Chemistry, 2008, 80, 905-914.	6.5	28
78	Microprocessing of Liquid Plugs for Bio/chemical Analyses. Analytical Chemistry, 2008, 80, 6206-6213.	6.5	45
79	Electrochemical pH-responsive valve for automatic sampling. , 2008, , .		0
80	Integrated Electrochemical Analysis System with Microfluidic and Sensing Functions. Sensors, 2008, 8, 1111-1127.	3.8	28
81	Electrowetting on gold electrodes with microscopic three-dimensional structures for microfluidic devices. Journal of Applied Physics, 2008, 104, 064910.	2.5	13
82	Microanalysis System Based on Electrochemiluminescence with Automatic Mixing and pH-Regulation Functions. , 2007, , .		0
83	Micro Analysis System for Digestive Enzymes Based on Integrated Automatic pH-Stats. , 2007, , .		1
84	Analysis of Heavy Metal Ions in Real Samples using a Concentrator Device with a Super-Hydrophobic Surface. , 2007, , .		0
85	Microfluidic Device for On-Chip Manipulation of Liquid Plugs for Biosensing Applications. , 2007, , .		1
86	High Temporal Resolution Monitoring of Fermentations Using an On-Line Amperometric Flow-Through Microdetector. Electroanalysis, 2007, 19, 43-48.	2.9	4
87	Enzyme electrode formed by evaporative concentration and its performance characterization. Biosensors and Bioelectronics, 2007, 22, 3154-3160.	10.1	9
88	Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions. Biosensors and Bioelectronics, 2007, 22, 3167-3173.	10.1	48
89	On-chip handling of solutions and electrochemiluminescence detection of amino acids. Sensors and Actuators B: Chemical, 2007, 122, 542-548.	7.8	36
90	On-chip microfluidic transport and bio/chemical sensing based on electrochemical bubble formation. Sensors and Actuators B: Chemical, 2007, 123, 1153-1160.	7.8	21

#	Article	IF	CITATIONS
91	Electrochemical microsystem with porous matrix packed-beds for enzyme analysis. Sensors and Actuators B: Chemical, 2007, 124, 477-485.	7.8	23
92	Determination of the activities of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase in a microfluidic system. Biosensors and Bioelectronics, 2007, 22, 1330-1336.	10.1	20
93	Freeze-Dried Matrix as an Alternative to Solution Mixing for Enzyme Analysis in a Micro Flow Channel. , 2006, , .		0
94	Behavior of a Microelectrode with a Concentrated Enzyme-Immobilized Layer. , 2006, , .		0
95	On-Chip pH-Regulator and its Application to Bio/Chemical Sensing. , 2006, , .		0
96	Electrochemical determination of Î ³ -glutamyl transpeptidase activity and its application to a miniaturized analysis system. Biosensors and Bioelectronics, 2006, 21, 1230-1236.	10.1	11
97	Micro analysis system for pH and protease activities with an integrated sample injection mechanism. Biosensors and Bioelectronics, 2006, 22, 86-93.	10.1	13
98	Performance characterization of recombinant l-glutamate oxidase in a micro GOT/GPT sensing system. Sensors and Actuators B: Chemical, 2006, 119, 570-576.	7.8	16
99	Dependence of the response of an amperometric biosensor formed in a micro flow channel on structural and conditional parameters. Biosensors and Bioelectronics, 2006, 21, 2224-2231.	10.1	17
100	Stimulus-responsive Gels: Promising Materials for the Construction of Micro Actuators and Sensors. Journal of Intelligent Material Systems and Structures, 2006, 17, 1091-1097.	2.5	35
101	Highly Sophisticated Electrochemical Analysis System with an Integrated Microfluidic System Based on Electrowetting. , 2006, , .		0
102	Detection of Heavy-metal Ions Based on Evaporative Concentration Using a Super-hydrophobic Surface. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 356-357.	0.1	2
103	Microfluidic Device for Sequential Injection and Flushing of Solutions and its Application to Immunosensing. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 202-203.	0.1	0
104	Separation of DNA in a versatile microchip. Sensors and Actuators B: Chemical, 2005, 107, 975-979.	7.8	10
105	Integrated microfluidic system for the simultaneous determination of ammonia, creatinine, and urea. Sensors and Actuators B: Chemical, 2005, 108, 700-707.	7.8	28
106	Enhancement of the sensitivity of electrochemical stripping analysis by evaporative concentration using a super-hydrophobic surface. Science and Technology of Advanced Materials, 2005, 6, 671-677.	6.1	19
107	On-Chip Microfluidic Transport and Mixing Using Electrowetting and Incorporation of Sensing Functions. Analytical Chemistry, 2005, 77, 6857-6863.	6.5	81
108	Microfluidic transport based on direct electrowetting. Journal of Applied Physics, 2004, 96, 835-841.	2.5	49

#	Article	IF	CITATIONS
109	Native and sodium dodecyl sulfate-capillary gel electrophoresis of proteins on a single microchip. Electrophoresis, 2004, 25, 494-501.	2.4	27
110	A disposable on-line microsystem for continuous sampling and monitoring of glucose. Sensors and Actuators B: Chemical, 2004, 97, 90-97.	7.8	28
111	Microfabricated flow system for ammonia and creatinine with an air-gap structure. Sensors and Actuators B: Chemical, 2004, 98, 101-111.	7.8	25
112	Amperometric biosensor-based flow-through microdetector for microdialysis applications. Analytica Chimica Acta, 2004, 525, 75-82.	5.4	13
113	New Type of Glucose Sensor Based on Enzymatic Conversion of Gel Volume into Liquid Column Length. Biomacromolecules, 2004, 5, 486-491.	5.4	19
114	Micro-Analysis System for Glucose with an Electrochemically Actuated Sampling Mechanism. IEEJ Transactions on Sensors and Micromachines, 2004, 124, 148-149.	0.1	1
115	Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sensors and Actuators B: Chemical, 2003, 96, 38-45.	7.8	95
116	A disposable biosensor employing a glucose-sensitive biochemomechanical gel. Biosensors and Bioelectronics, 2003, 18, 1289-1297.	10.1	28
117	Electrochemical Protein Chip with Arrayed Immunosensors with Antibodies Immobilized in a Plasma-Polymerized Film. Analytical Chemistry, 2003, 75, 1116-1122.	6.5	162
118	A disposable "intelligent mosquito―with a reversible sampling mechanism using the volume-phase transition of a gel. Sensors and Actuators B: Chemical, 2002, 83, 53-59.	7.8	46
119	A reversible electrochemical nanosyringe pump and some considerations to realize low-power consumption. Sensors and Actuators B: Chemical, 2002, 86, 242-250.	7.8	42
120	Integration of microfabricated needle-type glucose sensor devices with a novel thin-film Ag/AgCl electrode and plasma-polymerized thin film: mass production techniques. Analyst, The, 2001, 126, 658-663.	3.5	31
121	Micromachined sensing module for pO2, pCO2, and pH and its design optimization for practical use. Sensors and Actuators B: Chemical, 2001, 76, 565-572.	7.8	17
122	A sampling mechanism employing the phase transition of a gel and its application to a micro analysis system imitating a mosquito. Sensors and Actuators B: Chemical, 2001, 80, 1-8.	7.8	34
123	Fabrication of a sensing module using micromachined biosensors. Biosensors and Bioelectronics, 2001, 16, 725-733.	10.1	44
124	Determination of blood pO2 using a micromachined Clark-type oxygen electrode. Analytica Chimica Acta, 2001, 431, 249-259.	5.4	48
125	Thin-Film Ag/AgCl Structure and Operational Modes to Realize Long-Term Storage. Journal of the Electrochemical Society, 2001, 148, E468.	2.9	67
126	Advances in the Microfabrication of Electrochemical Sensors and Systems. Electroanalysis, 2000, 12, 703-715.	2.9	138

#	Article	IF	CITATIONS
127	Performance Characteristics of a Urea Microsensor Employing a Micromachined Carbon Dioxide Electrode. Electroanalysis, 2000, 12, 1327-1333.	2.9	8
128	Disposable Chemical Oxygen Demand Sensor Using a Microfabricated Clark-Type Oxygen Electrode with a TiO2 Suspension Solution. Electroanalysis, 2000, 12, 1334-1338.	2.9	33
129	An integrated module for sensing pO2, pCO2, and pH. Analytica Chimica Acta, 2000, 405, 57-65.	5.4	52
130	Microfabrication of chemical sensors and biosensors for environmental monitoring. Materials Science and Engineering C, 2000, 12, 55-61.	7.3	39
131	āfžā,Ħ,¯āfāfžā,•āf¼āf‹āf³ā,ºã«ā,ˆā,Šä½œè£½ã•ã,Œã,‹é›»æº—北å┤ã,»ãf³ã,µã₽ç¾çж. Electrochemistry, 2	000 ,.6 8, 2	89-293.
132	Microfabricated Liquid Junction Ag/AgCl Reference Electrode and Its Application to a One-Chip Potentiometric Sensor. Analytical Chemistry, 1999, 71, 5069-5075.	6.5	150
133	Micromachined Severinghaus-Type Carbon Dioxide Electrode. Analytical Chemistry, 1999, 71, 1737-1743.	6.5	48
134	Micromachined liquid-junction Ag/AgCl reference electrode. Sensors and Actuators B: Chemical, 1998, 46, 146-154.	7.8	79
135	Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability. Sensors and Actuators B: Chemical, 1998, 46, 104-113.	7.8	123
136	A novel thin-film Ag/AgCl anode structure for microfabricated Clark-type oxygen electrodes. Sensors and Actuators B: Chemical, 1998, 53, 140-146.	7.8	39
137	Design and Validation of a Low-Cost Paper-Based Oxygen Electrode. Analytical Letters, 1997, 30, 1797-1807.	1.8	13
138	Disposable clark oxygen electrode using recycled materials and its application. Sensors and Actuators B: Chemical, 1994, 21, 17-22.	7.8	13
139	Integrated amino acid sensors for detection of L-glutamate, L-lysine, L-arginine, and L-histidine. Electroanalysis, 1994, 6, 299-304.	2.9	9
140	Micromachined glass electrode. Sensors and Actuators B: Chemical, 1994, 20, 27-32.	7.8	2
141	Micromachined Clark oxygen electrode. Sensors and Actuators B: Chemical, 1993, 10, 91-98.	7.8	58
142	A miniature Clark-type oxygen electrode using a polyelectrolyte and its application as a glucose sensor. Biosensors and Bioelectronics, 1991, 6, 395-400.	10.1	42
143	Miniature Clark-type oxygen electrode with a three-electrode configuration. Sensors and Actuators B: Chemical, 1990, 2, 297-303.	7.8	31
144	Fabrication of an oxygen electrode using semiconductor technology. Analytical Chemistry, 1988, 60, 1078-1080.	6.5	63