
Pingtao Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant immune networks. Trends in Plant Science, 2022, 27, 255-273.	4.3	140
2	Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 2022, 34, 1447-1478.	3.1	318
3	Transcriptional regulation of plant innate immunity. Essays in Biochemistry, 2022, 66, 607-620.	2.1	9
4	Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592, 110-115.	13.7	536
5	A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology, 2021, 72, 155-184.	8.6	56
6	Channeling plant immunity. Cell, 2021, 184, 3358-3360.	13.5	14
7	PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62, 102030.	3.5	373
8	Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors. Journal of Experimental Botany, 2021, 72, 7927-7941.	2.4	14
9	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	2.8	31
10	Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
11	Highâ€resolution expression profiling of selected gene sets during plant immune activation. Plant Biotechnology Journal, 2020, 18, 1610-1619.	4.1	21
12	Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18832-18839.	3.3	82
13	Estradiol-inducible AvrRps4 expression reveals distinct properties of TIR-NLR-mediated effector-triggered immunity. Journal of Experimental Botany, 2020, 71, 2186-2197.	2.4	37
14	Stories of Salicylic Acid: A Plant Defense Hormone. Trends in Plant Science, 2020, 25, 549-565.	4.3	384
15	Phosphorylation-Regulated Activation of the Arabidopsis RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. Cell Host and Microbe, 2020, 27, 769-781.e6.	5.1	50
16	Low-cost and High-throughput RNA-seq Library Preparation for Illumina Sequencing from Plant Tissue. Bio-protocol, 2020, 10, e3799.	0.2	5
17	Diverse <scp>NLR</scp> immune receptors activate defence via the <scp>RPW</scp> 8â€ <scp>NLR NRG</scp> 1. New Phytologist, 2019, 222, 966-980.	3.5	219
18	<pre><scp>TGACG</scp>â€<scp>BINDING FACTOR</scp> 1 (<scp>TGA</scp>1) and <scp>TGA</scp>4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of <i>SYSTEMIC ACQUIRED RESISTANCE <scp>DEFICIENT</scp> 1</i> (<i><scp>SARD</scp>1</i>) and <i><scp>CALMODULIN</scp>â€<scp>BINDING PROTEIN</scp> 60g</i> (<i><scp>CBP</scp>60g</i>). New Phytologist, 2018, 217, 344-354.</pre>	3.5	126

PINGTAO DING

#	Article	IF	CITATIONS
19	Distinct modes of derepression of an <i>Arabidopsis</i> immune receptor complex by two different bacterial effectors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10218-10227.	3.3	83
20	Pathogens Suppress Host Transcription Factors for Rampant Proliferation. Trends in Plant Science, 2018, 23, 950-953.	4.3	9
21	A workflow for simplified analysis of ATAC-cap-seq data in R. GigaScience, 2018, 7, .	3.3	6
22	Deadlier than the malate. Cell Research, 2018, 28, 609-610.	5.7	1
23	Mis-placed Congeniality: When Pathogens Ask Their Plant Hosts for Another Drink. Developmental Cell, 2017, 40, 116-117.	3.1	2
24	Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathogens, 2017, 13, e1006376.	2.1	103
25	Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. Plant Cell, 2016, 28, 2603-2615.	3.1	121
26	Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. ELife, 2016, 5, e13568.	2.8	217
27	Heterotrimeric G proteins in plant defense against pathogens and ABA signaling. Environmental and Experimental Botany, 2015, 114, 153-158.	2.0	13
28	ldentification of additional MAP kinases activated upon PAMP treatment. Plant Signaling and Behavior, 2014, 9, e976155.	1.2	46
29	Splicing of Receptor-Like Kinase-Encoding SNC4 and CERK1 is Regulated by Two Conserved Splicing Factors that Are Required for Plant Immunity. Molecular Plant, 2014, 7, 1766-1775.	3.9	47
30	Heterotrimeric G Proteins Serve as a Converging Point in Plant Defense Signaling Activated by Multiple Receptor-Like Kinases Â. Plant Physiology, 2013, 161, 2146-2158.	2.3	169
31	The Ankyrin-Repeat Transmembrane Protein BDA1 Functions Downstream of the Receptor-Like Protein SNC2 to Regulate Plant Immunity. Plant Physiology, 2012, 159, 1857-1865.	2.3	98
32	Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18220-18225.	3.3	344
33	<i>Arabidopsis snc2-1D</i> Activates Receptor-Like Protein-Mediated Immunity Transduced through WRKY70. Plant Cell, 2010, 22, 3153-3163.	3.1	95
34	MOS11: A New Component in the mRNA Export Pathway. PLoS Genetics, 2010, 6, e1001250.	1.5	59
35	Phosphorylation-Regulated Activation of the Arabidopsis RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. SSRN Electronic Journal, 0, , .	0.4	1