Kevin D Corbett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408811/publications.pdf Version: 2024-02-01

KEVIN D CODBETT

#	Article	IF	CITATIONS
1	SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 2020, 183, 1043-1057.e15.	28.9	860
2	Structure, Molecular Mechanisms, and Evolutionary Relationships in DNA Topoisomerases. Annual Review of Biophysics and Biomolecular Structure, 2004, 33, 95-118.	18.3	379
3	The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nature Communications, 2021, 12, 502.	12.8	307
4	Architecture and selfâ€assembly of the <scp>SARS oV</scp> â€2 nucleocapsid protein. Protein Science, 2020, 29, 1890-1901.	7.6	218
5	Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9. Cell, 2017, 170, 899-912.e10.	28.9	213
6	Identification of H3K4me1-associated proteins at mammalian enhancers. Nature Genetics, 2018, 50, 73-82.	21.4	177
7	The C-terminal domain of DNA gyrase A adopts a DNA-bending Â-pinwheel fold. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7293-7298.	7.1	148
8	Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity. Molecular Cell, 2020, 77, 723-733.e6.	9.7	148
9	The Structural Basis for Substrate Specificity in DNA Topoisomerase IV. Journal of Molecular Biology, 2005, 351, 545-561.	4.2	147
10	TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. ELife, 2015, 4, .	6.0	137
11	Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nature Structural and Molecular Biology, 2010, 17, 438-444.	8.2	125
12	Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nature Structural and Molecular Biology, 2019, 26, 164-174.	8.2	123
13	The Monopolin Complex Crosslinks Kinetochore Components to Regulate Chromosome-Microtubule Attachments. Cell, 2010, 142, 556-567.	28.9	119
14	HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Molecular Cell, 2020, 77, 709-722.e7.	9.7	116
15	The Chromosome Axis Controls Meiotic Events through a Hierarchical Assembly of HORMA Domain Proteins. Developmental Cell, 2014, 31, 487-502.	7.0	108
16	The multifaceted roles of the HORMA domain in cellular signaling. Journal of Cell Biology, 2015, 211, 745-755.	5.2	106
17	A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. ELife, 2019, 8, .	6.0	100
18	Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO Journal, 2003, 22, 151-163.	7.8	98

KEVIN D CORBETT

#	Article	IF	CITATIONS
19	Molecular organization of mammalian meiotic chromosome axis revealed by expansion STORM microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18423-18428.	7.1	89
20	Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nature Structural and Molecular Biology, 2007, 14, 611-619.	8.2	86
21	The many faces of Ras: recognition of small GTP-binding proteins. Trends in Biochemical Sciences, 2001, 26, 710-716.	7.5	80
22	Stable RAGE-Heparan Sulfate Complexes Are Essential for Signal Transduction. ACS Chemical Biology, 2013, 8, 1611-1620.	3.4	71
23	Structural Dissection of ATP Turnover in the Prototypical GHL ATPase TopoVI. Structure, 2005, 13, 873-882.	3.3	69
24	The <scp>AAA</scp> + <scp>ATP</scp> ase <scp>TRIP</scp> 13 remodels <scp>HORMA</scp> domains through Nâ€ŧerminal engagement and unfolding. EMBO Journal, 2017, 36, 2419-2434.	7.8	69
25	Structure of M11L: A myxoma virus structural homolog of the apoptosis inhibitor, Bcl-2. Protein Science, 2007, 16, 695-703.	7.6	68
26	Sister kinetochores are mechanically fused during meiosis I in yeast. Science, 2014, 346, 248-251.	12.6	68
27	Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Research, 2018, 46, 279-292.	14.5	68
28	Blocking Zika virus vertical transmission. Scientific Reports, 2018, 8, 1218.	3.3	55
29	Dephosphorylation of the Ndc80 Tail Stabilizes Kinetochore-Microtubule Attachments via the Ska Complex. Developmental Cell, 2017, 41, 424-437.e4.	7.0	54
30	Structure of the ATPâ€binding domain of <i>Plasmodium falciparum</i> Hsp90. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2738-2744.	2.6	52
31	Structural and Computational Characterization of the SHV-1 β-Lactamase-β-Lactamase Inhibitor Protein Interface. Journal of Biological Chemistry, 2006, 281, 26745-26753.	3.4	46
32	Molecular Architecture of the Yeast Monopolin Complex. Cell Reports, 2012, 1, 583-589.	6.4	46
33	A tripartite mechanism catalyzes Mad2-Cdc20 assembly at unattached kinetochores. Science, 2021, 371, 64-67.	12.6	45
34	How Do Type II Topoisomerases Use ATP Hydrolysis to Simplify DNA Topology beyond Equilibrium? Investigating the Relaxation Reaction of Nonsupercoiling Type II Topoisomerases. Journal of Molecular Biology, 2009, 385, 1397-1408.	4.2	43
35	Sit4p/PP6 regulates ER-to-Golgi traffic by controlling the dephosphorylation of COPII coat subunits. Molecular Biology of the Cell, 2013, 24, 2727-2738.	2.1	43
36	TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC. Nature Communications, 2018, 9, 4354.	12.8	39

KEVIN D CORBETT

#	Article	IF	CITATIONS
37	Architecture and Dynamics of Meiotic Chromosomes. Annual Review of Genetics, 2021, 55, 497-526.	7.6	38
38	Structural Basis for SARS-CoV-2 Nucleocapsid Protein Recognition by Single-Domain Antibodies. Frontiers in Immunology, 2021, 12, 719037.	4.8	35
39	Emerging Roles for Plant Topoisomerase VI. Chemistry and Biology, 2003, 10, 107-111.	6.0	32
40	Structural basis for topoisomerase VI inhibition by the anti-Hsp90 drug radicicol. Nucleic Acids Research, 2006, 34, 4269-4277.	14.5	32
41	Structure, assembly and reading of centromeric chromatin. Current Opinion in Genetics and Development, 2012, 22, 139-147.	3.3	31
42	Recruitment of a SUMO isopeptidase to rDNA stabilizes silencing complexes by opposing SUMO targeted ubiquitin ligase activity. Genes and Development, 2017, 31, 802-815.	5.9	31
43	Molecular Mechanisms of Spindle Assembly Checkpoint Activation and Silencing. Progress in Molecular and Subcellular Biology, 2017, 56, 429-455.	1.6	31
44	α-Tubulin acetylation from the inside out. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19515-19516.	7.1	26
45	The conserved XPF:ERCC1-like Zip2:Spo16 complex controls meiotic crossover formation through structure-specific DNA binding. Nucleic Acids Research, 2019, 47, 2365-2376.	14.5	24
46	Evolutionary Dynamics and Molecular Mechanisms of HORMA Domain Protein Signaling. Annual Review of Biochemistry, 2022, 91, 541-569.	11.1	23
47	Control of bacterial immune signaling by a WYL domain transcription factor. Nucleic Acids Research, 2022, 50, 5239-5250.	14.5	23
48	Structure of the <i>Saccharomyces cerevisiae</i> Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator. EMBO Journal, 2016, 35, 2139-2151.	7.8	22
49	Proteomics-based screening of the endothelial heparan sulfate interactome reveals that C-type lectin 14a (CLEC14A) is a heparin-binding protein. Journal of Biological Chemistry, 2020, 295, 2804-2821.	3.4	18
50	The molecular basis of monopolin recruitment to the kinetochore. Chromosoma, 2019, 128, 331-354.	2.2	17
51	Responses to 10 common criticisms of anti-racism action in STEMM. PLoS Computational Biology, 2021, 17, e1009141.	3.2	16
52	Two pathways drive meiotic chromosome axis assembly in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2022, 50, 4545-4556.	14.5	15
53	A Rho-like small GTPase of Entamoeba histolytica contains an unusual amino acid residue in a conserved GDP-stabilization region and is not a substrate for C3 exoenzyme. Experimental Parasitology, 2002, 101, 107-110.	1.2	14
54	Effects of preoperative and postoperative resistance exercise interventions on recovery of physical function in patients undergoing abdominal surgery for cancer: a systematic review of randomised controlled trials. BMJ Open Sport and Exercise Medicine, 2018, 4, e000331.	2.9	13

KEVIN D CORBETT

#	Article	IF	CITATIONS
55	A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation. PLoS ONE, 2015, 10, e0143810.	2.5	10
56	Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans. PLoS Genetics, 2020, 16, e1008968.	3.5	8
57	The odds and implications of coinheritance of hemophilia A and B. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 931-935.	2.3	3
58	The buddingâ€yeast RWD protein Csm1 scaffolds diverse protein complexes through a conserved structural mechanism. Protein Science, 2018, 27, 2094-2100.	7.6	2
59	p31 ^{comet} and TRIP13 recycle Rev7 to regulate DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27761-27763.	7.1	2
60	Structure and activity of a bacterial defenseâ€associated 3′â€5′ exonuclease. Protein Science, 2022, 31, .	7.6	2
61	A new piece in the kinetochore jigsaw puzzle. Journal of Cell Biology, 2014, 206, 457-459.	5.2	1
62	Electron counting takes microED to the next level. Nature Methods, 2022, 19, 652-653.	19.0	1
63	A new phase in meiotic cell division. Nature, 2021, 592, 32-33.	27.8	Ο
64	Title is missing!. , 2020, 16, e1008968.		0
65	Title is missing!. , 2020, 16, e1008968.		0
66	Title is missing!. , 2020, 16, e1008968.		0
67	Title is missing!. , 2020, 16, e1008968.		Ο
68	Title is missing!. , 2020, 16, e1008968.		0
69	Title is missing!. , 2020, 16, e1008968.		0