Zhiwei Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4088044/publications.pdf

Version: 2024-02-01

51	793	17 h-index	26
papers	citations		g-index
52	52	52	852 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Enantioselective 1,3-Dipolar (5+3) Cycloadditions of Oxidopyrylium Ylides and Vinylcyclopropanes toward 9-Oxabicyclononanes. Organic Letters, 2022, 24, 3064-3068.	4.6	11
2	Ligand-Controlled Palladium-Catalyzed Asymmetric [4+3] and [2+3] Annulation Reactions of Spirovinylcyclopropyl Oxindoles with <i>o</i> -Quinone Methides. Organic Letters, 2022, 24, 3097-3101.	4.6	11
3	Research Progress on the Synthetic Method of Five-Membered Spirooxindole Derivatives at C-3 Position. Chinese Journal of Organic Chemistry, 2021, 41, 3965.	1.3	7
4	Catalytic Asymmetric Construction of a 1,2,4-Benzotriazepine Skeleton via Diastereo- and Enantioselective Decarboxylative [4 + 3] Cyclization. Organic Letters, 2021, 23, 2415-2420.	4.6	28
5	Diastereoselective Synthesis of Tetrabenzohydrofuran Spirooxindoles via Diethyl Phosphite-Mediated Coupling of Isatins with <i>o</i> -Quinone Methides. Journal of Organic Chemistry, 2021, 86, 8630-8640.	3.2	20
6	Inhibitory effects of chondroitin sulfate on alpha-amylase activity: A potential hypoglycemic agent. International Journal of Biological Macromolecules, 2021, 184, 289-296.	7.5	13
7	A PPh ₃ -catalyzed sequential annulation reaction to construct cyclopentane-fused dihydropyrazolone-pyrrolidinediones. Organic and Biomolecular Chemistry, 2020, 18, 5577-5581.	2.8	4
8	Synthesis of methylene cyclopropane-fused chromenes and dihydroquinolines by sequential $[4+2]$ -and $[1+2]$ -annulation. Organic and Biomolecular Chemistry, 2020, 18 , 3303-3311.	2.8	8
9	A regioselective Synthesis of Substituted Pyrazolines via a Cascade Annulation of Huisgen Zwitterion with αâ€Cyanoâ€Î±,βâ€unsaturated Ketones Under Solventâ€free Heating Conditions. ChemistrySelect, 2019, 4, 10352-10356.	1.5	2
10	K ₃ PO ₄ -promoted domino reactions: diastereoselective synthesis of <i>trans</i> -2,3-dihydrobenzofurans from salicyl <i>N-tert</i> -butanesulfinyl imines and sulfur ylides. RSC Advances, 2019, 9, 11978-11985.	3.6	12
11	Lewis base catalyzed regioselective cyclization of allene ketones or α-methyl allene ketones with unsaturated pyrazolones. Organic and Biomolecular Chemistry, 2019, 17, 3232-3238.	2.8	23
12	Efficient Synthesis of 4,7-Dihydro-1H-oxepino[2,3-c]pyrazoles by Potassium Carbonate Promoted [4+3] Annulation of Crotonate-Derived Sulfur Ylides with Benzylidenepyrazolones. Synthesis, 2019, 51, 2149-2156.	2.3	4
13	DBU-Promoted [4 + 4] Domino Cycloaddition of Ynones with Benzylidenepyrazolones To Access Eight-Membered Cyclic Ethers. Journal of Organic Chemistry, 2018, 83, 5450-5457.	3.2	20
14	Bisphosphine catalyzed sequential $[3+2]$ cycloaddition and Michael addition of ynones with benzylidenepyrazolones $\langle i \rangle via \langle i \rangle dual \hat{l} \pm \hat{a} \in \hat{l} \pm \hat{l} \pm \hat{a} \in \hat{l} \pm \hat{l} \pm \hat{a} \in \hat{l} \pm $	2.8	11
15	Diastereoselective Synthesis of Adjacent P,C-Stereogenic \hat{l}^2 - <i>N</i> -Glycosidic Linked \hat{l} ±-Aminophosphinates. Journal of Organic Chemistry, 2017, 82, 2481-2488.	3.2	3
16	Highly Regio- and Diastereoselective [3+2]-Annulation Reaction of Morita–Baylis–Hillman Carbonates with Pyrazolones Catalyzed by Tertiary Phosphines. Synthesis, 2017, 49, 3676-3685.	2.3	5
17	Regio- and Diastereoselective Construction of Spirocyclopenteneoxindoles through Phosphine-Catalyzed [3 + 2] Annulation of Methyleneindolinone with Alkynoate Derivatives. Journal of Organic Chemistry, 2017, 82, 10121-10128.	3.2	38
18	Diastereoselective [Cu(MeCN)4BF4/BF3·Et2O]-Catalyzed Cyclopropenation of Alkynes: Asymmetric Synthesis of β-Amino-α-cyclopropenyl Phosphonates. SynOpen, 2017, 01, 0068-0075.	1.7	0

#	Article	IF	Citations
19	Chemo†and Diastereoselective Construction of Indenopyrazolines <i>via</i> a Cascade azaâ€Michael/Aldol Annulation of Huisgen Zwitterions with 2â€Arylideneindaneâ€1,3â€diones. Advanced Synthesis and Catalysis, 2017, 359, 4158-4164.		19
20	Highly diastereoselective synthesis of spiro[tetrahydrothiophene-3,3′-pyrazol] with an all-carbon quaternary stereocenter via [3Â+Â2] cascade Michael/Michael cyclization catalyzed by DABCO. Synthetic Communications, 2016, 46, 793-798.	2.1	7
21	Regioselective BF ₃ ·Et ₂ O-catalyzed C–H functionalization of indoles and pyrrole with reaction of α-diazophosphonates. RSC Advances, 2016, 6, 69352-69356.	3.6	5
22	Diastereoselective synthesis of cyclopentene spiro-rhodanines containing three contiguous stereocenters via phosphine-catalyzed $[3+2]$ cycloaddition or one-pot sequential $[3+2]/[3+2]$ cycloaddition. RSC Advances, 2016, 6, 107984-107993.	3.6	20
23	Nucleophilicâ€Bisphosphineâ€Catalysed Oneâ€Pot Sequential [4+2]/[4+2] Annulation of an Allenoate with Benzylidenepyrazolones. European Journal of Organic Chemistry, 2015, 2015, 4720-4725.	2.4	24
24	Asymmetric synthesis of spiro[chroman-3,3′-pyrazol] scaffolds with an all-carbon quaternary stereocenter via a oxa-Michael–Michael cascade strategy with bifunctional amine-thiourea organocatalysts. RSC Advances, 2015, 5, 91108-91113.	3.6	45
25	Highly regio- and diastereoselective construction of spirocyclopenteneoxindole phosphonates through a phosphine-catalyzed [3 + 2] annulation reaction. RSC Advances, 2014, 4, 63246-63253.	3.6	17
26	Unexpected Stereoselective Synthesis of (<i>Z</i>)â€Î²â€Alkenyl Substituted βâ€Amino Phosphonates through β,γâ€Dihydrogen Shift Reaction Catalyzed by a Copper(I) Complex and Iodine [Cu(MeCN) ₄]PF ₆ /I ₂ . Advanced Synthesis and Catalysis, 2014, 356, 596-602.	4.3	5
27	Regiospecific and highly stereoselective synthesis of \hat{l}^2 -amino (Z)-enylphosphonates via \hat{l}^2 -hydrogen migration reaction of dialkyl \hat{l} ±-diazophosphonates catalyzed by AgOTf. RSC Advances, 2014, 4, 21492-21496.	3.6	4
28	Highly Diastereoselective Vinylogous Mukaiyama Aldol Reaction of Isatins with 2-(Trimethylsilyloxy)furans Catalyzed by Quinine. Synthetic Communications, 2014, 44, 936-942.	2.1	7
29	An environmentally benign approach for the synthesis of 3,3′-pyrrolidonyl spirooxindole derivatives via a cascade Knoevenagel–Michael–cyclization multicomponent reaction. RSC Advances, 2013, 3, 18857.	3.6	11
30	Enantio―and Diastereoselective Vinylogous Mukaiyama Aldol Reactions of αâ€Keto Phosphonates with 2â€(Trimethylsilyloxy)―furan Catalyzed by Bis(oxazoline)â€Copper Complexes. Advanced Synthesis and Catalysis, 2013, 355, 589-593.	4.3	15
31	Efficient Synthesis of Isoquinoline Derivatives via AgOTf/Cu(OTf)2-Cocatalyzed Cyclization of 2-Alkynyl Benzaldoxime. Synthetic Communications, 2013, 43, 1714-1720.	2.1	14
32	High diastereoselective vinylogous Mannich reaction induced by O-pivaloylated d-galactosylamine as the chiral auxiliary: stereoselective synthesis of 8-arylazocan-2-one. Carbohydrate Research, 2013, 374, 1-7.	2.3	5
33	Lewis Acid Catalyzed Diastereoselective Vinylogous Mannich Reaction Induced by O-Pivaloylated d-Galactosylamine as the Chiral Auxiliary: Stereoselective Synthesis of 6-Arylpiperidin-2-ones. Synthesis, 2012, 44, 111-119.	2.3	9
34	Asymmetric aza-Friedel–Crafts reaction of indoles induced by O-pivaloylated d-galactosylamine as the chiral auxiliary. Tetrahedron, 2012, 68, 4830-4837.	1.9	21
35	Highly efficient asymmetric vinylogous Mannich reaction induced by O-pivaloylated d-galactosylamine as the chiral auxiliary. Organic and Biomolecular Chemistry, 2011, 9, 1756.	2.8	14
36	Crossâ€Coupling Reactions of Aryl Halides with Amines, Phenols, and Thiols Catalyzed by an <i>N</i> , <i>Nâ€2</i> à6Đioxide–Copper(I) Catalytic System. European Journal of Organic Chemistry, 2011, 2013353-3360.	12.4	36

#	Article	IF	CITATIONS
37	Asymmetric <i>Mannich</i> à€Type Synthesis of <i>N</i> â€Phosphinyl <i>α</i> â€Aminophosphonic Acid Monoesters. Helvetica Chimica Acta, 2011, 94, 1586-1593.	1.6	12
38	Efficient Syntheses of 1 <i>H</i> -Isochromen-1-Ylmethylphosphonates via Regioselective 6-⟨i⟩Endo-Dig⟨/i⟩ Addition to Carbonâ€"Carbon Triple Bond Catalyzed by Pd(OAc)⟨sub⟩2⟨/sub⟩. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 2357-2367.	1.6	13
39	Highly Enantioselective Biginelli Reaction Promoted by Chiral Bifunctional Primary Amineâ€Thiourea Catalysts: Asymmetric Synthesis of Dihydropyrimidines. Advanced Synthesis and Catalysis, 2009, 351, 3057-3062.	4.3	93
40	Stereoselective Synthesis of αâ€Amino(phenyl)methyl(phenyl)phosphinic Acids with <i>O</i> â€Pivaloylated <scp>D</scp> â€Galactosylamine as Chiral Auxiliary. Chemistry - A European Journal, 2009, 15, 9290-9293.	3.3	26
41	An efficient and green method for the synthesis of <i>N</i> â€phosphoramino <i>o</i> â€hydroxylphenyl αâ€aminophosphonic monoesters. Heteroatom Chemistry, 2008, 19, 596-601.	0.7	10
42	Glycosylationâ€Induced and Lewis Acidâ€Catalyzed Asymmetric Synthesis of βâ€≺i>Nà€Glycosidically Linked αâ€Aminophosphonic Acids Derivatives. Advanced Synthesis and Catalysis, 2008, 350, 2339-2344.	4.3	19
43	Efficient Syntheses of (Thio)phosphonylated Isobenzofurans by Tandem Nucleophilic Addition and Regioselective 5â€∢i>exoâ€dig Addition to Carbonâ€Carbon Triple Bond: Cooperative Effect to 1,8â€Diazabicyclo[5.4.0]undecâ€7â€ene (DBU). Advanced Synthesis and Catalysis, 2008, 350, 2733-2739.	4.3	23
44	Synthesis of N-Protected <i>o</i> -Hydroxyl-phenyl—α-Aminophosphonic Monoester. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 679-680.	1.6	0
45	Synthesis of Diphenyl $\hat{l}\pm$ -(O-Phenyl Bis(2-Chloroethyl) amidophosphorylamino)-Phosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 720-725.	1.6	2
46	Mannich type reactions of chlorophosphites, phosphoramides and aldehydes (ketones) under solvent-free and catalyst-free conditions—synthesis of N-phosphoramino α-aminophosphonates. Green Chemistry, 2007, 9, 1341.	9.0	38
47	Synthesis and Structure of <i>O</i> , <i>O</i> â€Diethyl <i>N</i> â€{(<i>trans</i> â€4â€Arylâ€5,5â€dimethylâ€2â€oxidoâ€2 <i>λ</i> ⁵ â€1,3,2â€dioxaphosph Helvetica Chimica Acta, 2007, 90, 1932-1939.	ı ori ⊚anâ€≨	2 â€y l)methy
48	A convenient synthesis of 2-alkoxy-2-oxo-1,4,2-oxazaphosphinanes. Heteroatom Chemistry, 2007, 18, 65-69.	0.7	28
49	A simple and convenient procedure for the synthesis of naphthoquinone fused cyclic \hat{l}_{\pm} -aminophosphoryl chloride. Heteroatom Chemistry, 2007, 18, 359-362.	0.7	13
50	An improved route to the synthetic of diphenyl \hat{l} ±-(diethoxythiophosphorylamino)methylphosphonates. Bioorganic Chemistry, 2006, 34, 167-172.	4.1	12
51	Preparation and thermal properties of a novel <scp>DOPO</scp> â€based Schiff base derivative as a flame retardant for polystyrene. Journal of Applied Polymer Science, 0, , .	2.6	0