Kaituo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4087824/publications.pdf Version: 2024-02-01

304743 361022 1,440 34 22 35 h-index citations g-index papers 35 35 35 1174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chemistry, 2009, 115, 1458-1463.	8.2	256
2	Methyl Jasmonate Reduces Decay and Enhances Antioxidant Capacity in Chinese Bayberries. Journal of Agricultural and Food Chemistry, 2009, 57, 5809-5815.	5.2	104
3	Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biology and Technology, 2008, 49, 301-307.	6.0	100
4	Methyl jasmonate induces resistance against Penicillium citrinum in Chinese bayberry by priming of defense responses. Postharvest Biology and Technology, 2014, 98, 90-97.	6.0	94
5	Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. International Journal of Food Microbiology, 2015, 194, 32-39.	4.7	69
6	Lowâ€ŧemperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. Journal of the Science of Food and Agriculture, 2009, 89, 1690-1696.	3.5	67
7	Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus. Food Control, 2021, 120, 107499.	5.5	58
8	Effect of methyl jasmonate on quality and antioxidant activity of postharvest loquat fruit. Journal of the Science of Food and Agriculture, 2009, 89, 2064-2070.	3.5	54
9	Induction of Direct or Priming Resistance against <i>Botrytis cinerea</i> in Strawberries by β-Aminobutyric Acid and Their Effects on Sucrose Metabolism. Journal of Agricultural and Food Chemistry, 2016, 64, 5855-5865.	5.2	54
10	Effect of hot air treatment on postharvest mould decay in Chinese bayberry fruit and the possible mechanisms. International Journal of Food Microbiology, 2010, 141, 11-16.	4.7	46
11	Biocontrol of <i>Penicillium digitatum</i> on Postharvest Citrus Fruits by <i>Pseudomonas fluorescens</i> . Journal of Food Quality, 2018, 2018, 1-10.	2.6	43
12	Effect of ethanol treatment on disease resistance against anthracnose rot in postharvest loquat fruit. Scientia Horticulturae, 2015, 188, 115-121.	3.6	38
13	A combination of hot air treatment and nanoâ€packing reduces fruit decay and maintains quality in postharvest Chinese bayberries. Journal of the Science of Food and Agriculture, 2010, 90, 2427-2432.	3.5	35
14	Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control, 2011, 22, 82-87.	5.5	35
15	Potential modes of action of <i>Pseudomonas fluorescens</i> ZX during biocontrol of blue mold decay on postharvest citrus. Journal of the Science of Food and Agriculture, 2020, 100, 744-754.	3.5	35
16	Effects of 1â€methylcyclopropene on oxidative damage, phospholipases and chilling injury in loquat fruit. Journal of the Science of Food and Agriculture, 2009, 89, 2214-2220.	3.5	34
17	Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved. Postharvest Biology and Technology, 2015, 102, 51-60.	6.0	34
18	Effect of Methyl Jasmonate in Combination with Ethanol Treatment on Postharvest Decay and Antioxidant Capacity in Chinese Bayberries. Journal of Agricultural and Food Chemistry, 2010, 58, 9597-9604.	5.2	33

KAITUO WANG

#	Article	IF	CITATIONS
19	PpWRKY45 is involved in methyl jasmonate primed disease resistance by enhancing the expression of jasmonate acid biosynthetic and pathogenesis-related genes of peach fruit. Postharvest Biology and Technology, 2021, 172, 111390.	6.0	31
20	Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated with β-aminobutyric acid. Scientia Horticulturae, 2019, 244, 352-364.	3.6	29
21	Potential of Volatile Organic Compounds Emitted by <i>Pseudomonas fluorescens</i> ZX as Biological Fumigants to Control Citrus Green Mold Decay at Postharvest. Journal of Agricultural and Food Chemistry, 2021, 69, 2087-2098.	5.2	29
22	Volatile organic compounds produced by Pseudomonas fluorescens ZX as potential biological fumigants against gray mold on postharvest grapes. Biological Control, 2021, 163, 104754.	3.0	28
23	PpHOS1, a RING E3 ubiquitin ligase, interacts with PpWRKY22 in the BABA-induced priming defense of peach fruit against Rhizopus stolonifer. Postharvest Biology and Technology, 2020, 159, 111029.	6.0	23
24	β-aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1. Plant Physiology and Biochemistry, 2020, 156, 552-565.	5.8	15
25	Activation of the BABAâ€induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK5 in postharvest peach fruit. Molecular Plant Pathology, 2021, 22, 1624-1640.	4.2	13
26	Dual function of <scp>VvWRKY18</scp> transcription factor in the βâ€aminobutyric acidâ€activated priming defense in grapes. Physiologia Plantarum, 2021, 172, 1477-1492.	5.2	12
27	Heat Shock Protein HSP24 Is Involved in the BABA-Induced Resistance to Fungal Pathogen in Postharvest Grapes Underlying an NPR1-Dependent Manner. Frontiers in Plant Science, 2021, 12, 646147.	3.6	12
28	Sucrose metabolism and sensory evaluation in peach as influenced by β-aminobutyric acid (BABA)-induced disease resistance and the transcriptional mechanism involved. Postharvest Biology and Technology, 2021, 174, 111465.	6.0	11
29	Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism. Molecular Plant-Microbe Interactions, 2021, 34, 1250-1266.	2.6	11
30	PpWRKY22 physically interacts with PpHOS1/PpTGA1 and positively regulates several SA-responsive PR genes to modulate disease resistance in BABA-primed peach fruit. Scientia Horticulturae, 2021, 290, 110479.	3.6	10
31	MADS2 regulates priming defence in postharvest peach through combined salicylic acid and abscisic acid signaling. Journal of Experimental Botany, 2022, 73, 3787-3806.	4.8	8
32	Translocation of PpNPR1 is required for β-aminobutyric acid-triggered resistance against Rhizopus stolonifer in peach fruit. Scientia Horticulturae, 2020, 272, 109556.	3.6	5
33	Redox status regulates subcelluar localization of PpTGA1 associated with a BABA-induced priming defence againstARhizopus rot in peach fruit. Molecular Biology Reports, 2020, 47, 6657-6668.	2.3	5
34	Biological Control of Green Mould Decay in Postharvest Chinese Bayberries by Pichia membranaefaciens. Journal of Phytopathology, 2011, 159, no-no.	1.0	1