Andrea Camposeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4087560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromolecular Materials and Engineering, 2013, 298, 504-520.	1.7	750
2	Patterning of light-emitting conjugated polymer nanofibres. Nature Nanotechnology, 2008, 3, 614-619.	15.6	180
3	Laser Emission from Electrospun Polymer Nanofibers. Small, 2009, 5, 562-566.	5.2	167
4	Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Progress in Polymer Science, 2015, 43, 48-95.	11.8	152
5	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	3.6	132
6	Lightâ€Emitting Electrospun Nanofibers for Nanophotonics and Optoelectronics. Macromolecular Materials and Engineering, 2013, 298, 487-503.	1.7	115
7	Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages. ACS Nano, 2015, 9, 10047-10054.	7.3	96
8	Local Mechanical Properties of Electrospun Fibers Correlate to Their Internal Nanostructure. Nano Letters, 2013, 13, 5056-5062.	4.5	94
9	Optical response and emission waveguiding in rubrene crystals. Physical Review B, 2007, 75, .	1.1	81
10	Photoswitchable Organic Nanofibers. Advanced Materials, 2008, 20, 314-318.	11.1	74
11	Rotational dynamics of optically trapped nanofibers. Optics Express, 2010, 18, 822.	1.7	69
12	A Bioartificial Renal Tubule Device Embedding Human Renal Stem/Progenitor Cells. PLoS ONE, 2014, 9, e87496.	1.1	69
13	Electrospun dye-doped polymer nanofibers emitting in the near infrared. Applied Physics Letters, 2007, 90, 143115.	1.5	67
14	Near-field electrospinning of light-emitting conjugated polymer nanofibers. Nanoscale, 2013, 5, 11637.	2.8	66
15	Electrospun light-emitting nanofibers as excitation source in microfluidic devices. Lab on A Chip, 2009, 9, 2851.	3.1	64
16	Bright Light Emission and Waveguiding in Conjugated Polymer Nanofibers Electrospun from Organic Salt Added Solutions. Macromolecules, 2013, 46, 5935-5942.	2.2	63
17	Transforming colloidal Cs ₄ PbBr ₆ nanocrystals with poly(maleic) Tj ETQq1 1 0.784314 intermediate heterostructures. Chemical Science, 2020, 11, 3986-3995.	rgBT /Ove 3.7	erlock 10 Tf 5 59
18	Optical Anisotropy in Single Light-Emitting Polymer Nanofibers. Journal of Physical Chemistry C, 2011, 115, 20399-20405.	1.5	58

#	Article	IF	CITATIONS
19	Twoâ€₽hoton Continuous Flow Lithography. Advanced Materials, 2012, 24, 1304-1308.	11.1	58
20	Dielectric tensor of tetracene single crystals: The effect of anisotropy on polarized absorption and emission spectra. Journal of Chemical Physics, 2008, 128, 154709.	1.2	55
21	Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors. Macromolecular Materials and Engineering, 2017, 302, 1600569.	1.7	55
22	Single light-emitting polymer nanofiber field-effect transistors. Nanoscale, 2010, 2, 2217.	2.8	53
23	Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89, 201105.	1.5	51
24	A nanophotonic laser on a graph. Nature Communications, 2019, 10, 226.	5.8	51
25	A cold cesium atomic beam produced out of a pyramidal funnel. Optics Communications, 2001, 200, 231-239.	1.0	48
26	Light-emitting nanocomposite CdS–polymer electrospun fibres via in situ nanoparticle generation. Nanoscale, 2011, 3, 4234.	2.8	44
27	Electrically Tunable Organic Distributed Feedback Lasers Embedding Nonlinear Optical Molecules. Advanced Materials, 2012, 24, OP221-5.	11.1	44
28	Distributed Feedback Imprinted Electrospun Fiber Lasers. Advanced Materials, 2014, 26, 6542-6547.	11.1	44
29	Physically Transient Photonics: Random <i>versus</i> Distributed Feedback Lasing Based on Nanoimprinted DNA. ACS Nano, 2014, 8, 10893-10898.	7.3	42
30	Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components. Journal of the American Chemical Society, 2014, 136, 14245-14254.	6.6	42
31	GBr6NL: A generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation. Journal of Chemical Physics, 2007, 126, 195102.	1.2	41
32	Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2006, 89, 131109.	1.5	40
33	Polarized superradiance from delocalized exciton transitions in tetracene single crystals. Physical Review B, 2010, 81, .	1.1	40
34	Circularly Polarized Laser with Chiral Nematic Cellulose Nanocrystal Cavity. ACS Nano, 2021, 15, 8753-8760.	7.3	39
35	Interaction Scheme and Temperature Behavior of Energy Transfer in a Lightâ€Emitting Inorganicâ€Organic Composite System. Advanced Functional Materials, 2008, 18, 751-757.	7.8	37
36	CdS–Polymer Nanocomposites and Lightâ€Emitting Fibers by In Situ Electronâ€Beam Synthesis and Lithography. Advanced Materials, 2012, 24, 5320-5326.	11.1	37

#	Article	IF	CITATIONS
37	Full color control and white emission from conjugated polymer nanofibers. Applied Physics Letters, 2009, 94, .	1.5	36
38	Controlling spontaneous surface structuring of azobenzene-containing polymers for large-scale nano-lithography of functional substrates. Applied Physics Letters, 2013, 102, .	1.5	35
39	Two-Photon Induced Self-Structuring of Polymeric Films Based on Y-Shape Azobenzene Chromophore. Journal of Physical Chemistry C, 2011, 115, 13566-13570.	1.5	33
40	Modal Coupling of Single Photon Emitters Within Nanofiber Waveguides. ACS Nano, 2016, 10, 6125-6130.	7.3	33
41	Amplified spontaneous emission in quaterthiophene single crystals. Applied Physics Letters, 2008, 92, .	1.5	31
42	Enhancement of light polarization from electrospun polymer fibers by room temperature nanoimprint lithography. Nanotechnology, 2010, 21, 215304.	1.3	31
43	Conformational Evolution of Elongated Polymer Solutions Tailors the Polarization of Light-Emission from Organic Nanofibers. Macromolecules, 2014, 47, 4704-4710.	2.2	31
44	Electrically controlled white laser emission through liquid crystal/polymer multiphases. Light: Science and Applications, 2020, 9, 19.	7.7	31
45	Role of doping concentration on the competition between amplified spontaneous emission and nonradiative energy transfer in blends of conjugated polymers. Physical Review B, 2006, 73, .	1.1	30
46	Controlled Atmosphere Electrospinning of Organic Nanofibers with Improved Light Emission and Waveguiding Properties. Macromolecules, 2015, 48, 7803-7809.	2.2	30
47	Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14, 1951.	1.7	29
48	Axial optical trapping efficiency through a dielectric interface. Physical Review E, 2007, 76, 061917.	0.8	29
49	Sub-ms dynamics of the instability onset of electrospinning. Soft Matter, 2015, 11, 3424-3431.	1.2	29
50	Mechanisms for O2 dissociation during pulsed-laser ablation and deposition. Applied Physics Letters, 2001, 78, 2402-2404.	1.5	28
51	Integrated bottom-up and top-down soft lithographies and microfabrication approaches to multifunctional polymers. Journal of Materials Chemistry C, 2013, 1, 7663.	2.7	28
52	Spatially Confined CdS NCs in Situ Synthesis through Laser Irradiation of Suitable Unimolecular Precursor-Doped Polymer. Journal of Physical Chemistry C, 2012, 116, 25119-25125.	1.5	27
53	Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods. Analytical and Bioanalytical Chemistry, 2016, 408, 1357-1364.	1.9	27
54	Two-photon patterning of a polymer containing Y-shaped azochromophores. Applied Physics Letters, 2009, 94, 011115.	1.5	26

#	Article	IF	CITATIONS
55	Multi-photon in situ synthesis and patterning of polymer-embedded nanocrystals. Journal of Materials Chemistry, 2012, 22, 9787.	6.7	26
56	Optical Gain in the Near Infrared by Lightâ€Emitting Electrospun Fibers. Advanced Functional Materials, 2014, 24, 5225-5231.	7.8	26
57	All-optical switching in dye-doped DNA nanofibers. Journal of Materials Chemistry C, 2019, 7, 170-176.	2.7	26
58	Energy Dissipation and Asymmetric Excitation in Hybrid Waveguides for Routing and Coloring. Journal of Physical Chemistry Letters, 2021, 12, 7034-7040.	2.1	26
59	Core–Shell Electrospun Fibers Encapsulating Chromophores or Luminescent Proteins for Microscopically Controlled Molecular Release. Molecular Pharmaceutics, 2016, 13, 729-736.	2.3	25
60	Soft Nanopatterning on Lightâ€Emitting Inorganic–Organic Composites. Advanced Functional Materials, 2008, 18, 2692-2698.	7.8	24
61	Diverse Regimes of Mode Intensity Correlation in Nanofiber Random Lasers through Nanoparticle Doping. ACS Photonics, 2018, 5, 1026-1033.	3.2	24
62	Realization of submicrometer structures by a confocal system on azopolymer films containing photoluminescent chromophores. Journal of Applied Physics, 2010, 107, .	1.1	23
63	Random lasing in an organic lightâ€emitting crystal and its interplay with vertical cavity feedback. Laser and Photonics Reviews, 2014, 8, 785-791.	4.4	23
64	Generalized ellipsometry and dielectric tensor of rubrene single crystals. Journal of Applied Physics, 2007, 102, .	1.1	22
65	Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow. Biomicrofluidics, 2010, 4, .	1.2	22
66	Polarization splitting in organic-based microcavities working in the strong coupling regime. Organic Electronics, 2007, 8, 114-119.	1.4	21
67	Intelligent non-colorimetric indicators for the perishable supply chain by non-wovens with photo-programmed thermal response. Nature Communications, 2020, 11, 5991.	5.8	21
68	Unusual Red Light Emission from Nonmetallic Cu ₂ Te Microdisk for Laser and SERS Applications. Advanced Optical Materials, 2022, 10, 2101976.	3.6	21
69	Polarized Absorption, Spontaneous and Stimulated Blue Light Emission of Jâ€ŧype Tetraphenylbutadiene Monocrystals. ChemPhysChem, 2010, 11, 429-434.	1.0	20
70	Optical properties of in-vitro biomineralised silica. Scientific Reports, 2012, 2, 607.	1.6	18
71	Nanoparticle-doped electrospun fiber random lasers with spatially extended light modes. Optics Express, 2017, 25, 24604.	1.7	18
72	Photocontrolled wettability changes in polymer microchannels doped with photochromic molecules. Applied Physics Letters, 2007, 91, 113113.	1.5	17

#	Article	IF	CITATIONS
73	Real-time monitoring of the surface relief formation on azo-polymer films upon near-field excitation. Journal of Microscopy, 2008, 229, 307-312.	0.8	17
74	Hierarchical assembly of light-emitting polymer nanofibers in helical morphologies. Applied Physics Letters, 2009, 95, .	1.5	17
75	Electrospun Amplified Fiber Optics. ACS Applied Materials & amp; Interfaces, 2015, 7, 5213-5218.	4.0	17
76	Registration accuracy in multilevel soft lithography. Nanotechnology, 2007, 18, 175302.	1.3	16
77	Rapid prototyping encapsulation for polymer light-emitting lasers. Applied Physics Letters, 2009, 94, .	1.5	16
78	Biosilica Electricallyâ€Insulating Layers by Soft Lithographyâ€Assisted Biomineralisation with Recombinant Silicatein. Advanced Materials, 2011, 23, 4674-4678.	11.1	16
79	Enhanced emission efficiency in electrospun polyfluorene copolymer fibers. Applied Physics Letters, 2013, 102, 211911.	1.5	16
80	Multifunctional Polymer Nanofibers: UV Emission, Optical Gain, Anisotropic Wetting, and High Hydrophobicity for Next Flexible Excitation Sources. ACS Applied Materials & Interfaces, 2015, 7, 21907-21912.	4.0	16
81	Anisotropic Conjugated Polymer Chain Conformation Tailors the Energy Migration in Nanofibers. Journal of the American Chemical Society, 2016, 138, 15497-15505.	6.6	16
82	Low-defectiveness exfoliation of MoS2 nanoparticles and their embedment in hybrid light-emitting polymer nanofibers. Nanoscale, 2018, 10, 21748-21754.	2.8	16
83	Heterogeneous Random Laser with Switching Activity Visualized by Replica Symmetry Breaking Maps. ACS Photonics, 2021, 8, 376-383.	3.2	16
84	Atomic lithography with barium atoms. Applied Surface Science, 2005, 248, 196-199.	3.1	15
85	Atomic nanolithography patterning of submicron features: writing an organic self-assembled monolayer with cold, bright Cs atom beams. Nanotechnology, 2005, 16, 1536-1541.	1.3	15
86	Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 3058-3067.	1.5	15
87	Laser Systems and Networks with Organic Nanowires and Nanofibers. Advanced Optical Materials, 2019, 7, 1900192.	3.6	15
88	A laser-cooled atom beam for nanolithography applications. Materials Science and Engineering C, 2003, 23, 217-220.	3.8	14
89	Directed Functionalization Tailors the Polarized Emission and Waveguiding Properties of Anthracene-Based Molecular Crystals. Chemistry of Materials, 2019, 31, 1775-1783.	3.2	14
90	Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers. Applied Physics Letters, 2006, 89, 121111.	1.5	13

#	Article	IF	CITATIONS
91	Organic-based distributed feedback lasers by direct electron-beam lithography on conjugated polymers. Applied Physics Letters, 2007, 91, 101110.	1.5	13
92	Nanowireâ€Intensified Metalâ€Enhanced Fluorescence in Hybrid Polymerâ€Plasmonic Electrospun Filaments. Small, 2018, 14, e1800187.	5.2	13
93	Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions. ACS Applied Materials & amp; Interfaces, 2020, 12, 26320-26329.	4.0	13
94	Er-LiYF4 coating of Si-based substrates by pulsed laser deposition. Surface and Coatings Technology, 2004, 180-181, 607-610.	2.2	12
95	Propagation properties and self-waveguided fluorescence emission in conjugated molecular solids. Organic Electronics, 2006, 7, 561-567.	1.4	12
96	Study of optical properties of electrospun light-emitting polymer fibers. Superlattices and Microstructures, 2010, 47, 145-149.	1.4	12
97	Electrostatic Mechanophores in Tuneable Lightâ€Emitting Piezopolymer Nanowires. Advanced Materials, 2017, 29, 1701031.	11.1	12
98	Soft Nanolithography by Polymer Fibers. Advanced Functional Materials, 2011, 21, 1140-1145.	7.8	11
99	Electrospun Fluorescent Nanofibers and Their Application in Optical Sensing. Nanoscience and Technology, 2015, , 129-155.	1.5	11
100	Dye Stabilization and Wavelength Tunability in Lasing Fibers Based on DNA. Advanced Optical Materials, 2020, 8, 2001039.	3.6	11
101	Fluorescence lifetime microscopy unveils the supramolecular organization of liposomal Doxorubicin. Nanoscale, 2022, 14, 8901-8905.	2.8	11
102	Atomic nanofabrication by laser manipulation of a neutral cesium beam. Materials Science and Engineering C, 2003, 23, 1087-1091.	3.8	10
103	Low-loss and highly polarized emission from planar polymer waveguides. Optics Letters, 2006, 31, 1429.	1.7	10
104	Monolithic vertical microcavities based on tetracene single crystals. Applied Physics Letters, 2008, 92, 063301.	1.5	10
105	Interplay of Stimulated Emission and Fluorescence Resonance Energy Transfer in Electrospun Light-Emitting Fibers. Journal of Physical Chemistry C, 2018, 122, 762-769.	1.5	10
106	Assembly of Pt Nanoparticles on Graphitized Carbon Nanofibers as Hierarchically Structured Electrodes. ACS Applied Nano Materials, 2020, 3, 9880-9888.	2.4	10
107	Subâ€50â€nm Conjugated Polymer Dots by Nanoprinting. Small, 2008, 4, 1894-1899.	5.2	9
108	Advancing the Science and Technology of Electrospinning and Functional Nanofibers. Macromolecular Materials and Engineering, 2017, 302, 1700237.	1.7	9

#	Article	IF	CITATIONS
109	Laser deposition of shape-memory alloy for MEMS applications. Applied Surface Science, 2003, 208-209, 518-521.	3.1	8
110	Organic Lightâ€Emitting Nanofibers by Solventâ€Resistant Nanofluidics. Advanced Materials, 2008, 20, 4158-4162.	11.1	8
111	Analysis of plume-buffer gas interaction through molecular and atomic oxygen absorption spectroscopy. Applied Physics A: Materials Science and Processing, 1999, 69, S509-S513.	1.1	6
112	Biomineral Amorphous Lasers through Light‣cattering Surfaces Assembled by Electrospun Fiber Templates. Laser and Photonics Reviews, 2018, 12, 1700224.	4.4	6
113	Conformable Nanowire-in-Nanofiber Hybrids for Low-Threshold Optical Gain in the Ultraviolet. ACS Nano, 2020, 14, 8093-8102.	7.3	6
114	Pulsed laser deposition and in situ diagnostics of the process applied to shape-memory alloys. Applied Physics A: Materials Science and Processing, 2003, 76, 927-934.	1.1	5
115	Pulsed laser deposition and characterization of NiTi-based MEMS prototypes. Applied Physics A: Materials Science and Processing, 2004, 79, 1141-1143.	1.1	5
116	Patterning nonanethiol protected gold films by barium atoms. Applied Physics B: Lasers and Optics, 2004, 79, 539-542.	1.1	5
117	Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures. Nanotechnology, 2008, 19, 335301.	1.3	5
118	Thermal tunability of monolithic polymer microcavities. Applied Physics Letters, 2008, 92, 253310.	1.5	5
119	Optimization of electrospinning techniques for the realization of nanofiber plastic lasers. Proceedings of SPIE, 2016, , .	0.8	5
120	Near-field microscopy investigation of laser-deposited coated conductors. Applied Surface Science, 2003, 208-209, 599-603.	3.1	4
121	Laser ablation of ceramic oxides in the presence of a RF pulsed oxygen plasma. Surface and Coatings Technology, 2004, 180-181, 591-595.	2.2	4
122	Nanopatterning by atomic nanofabrication: Interaction of laser cooled atoms with surfaces. Materials Science and Engineering C, 2007, 27, 1418-1422.	3.8	4
123	Electrical properties of <i>in vitro</i> biomineralized recombinant silicatein deposited by microfluidics. Applied Physics Letters, 2012, 101, 193702.	1.5	4
124	Electron-Beam Nanopatterning and Spectral Modulation of Organic Molecular Light-Emitting Single Crystals. Langmuir, 2014, 30, 1643-1649.	1.6	4
125	Perspectives: Nanofibers and nanowires for disordered photonics. APL Materials, 2017, 5, 035301.	2.2	4
126	Naturally Degradable Photonic Devices with Transient Function by Heterostructured Waxyâ€6ublimating and Waterâ€6oluble Materials. Advanced Science, 2020, 7, 2001594.	5.6	3

#	Article	IF	CITATIONS
127	WO ₃ Nanowires Enhance Molecular Alignment and Optical Anisotropy in Electrospun Nanocomposite Fibers: Implications for Hybrid Light-Emitting Systems. ACS Applied Nano Materials, 2022, 5, 3654-3666.	2.4	3
128	One-dimensional bichromatic standing-wave cooling of cesium atoms. Journal of Optics B: Quantum and Semiclassical Optics, 2003, 5, S29-S37.	1.4	2
129	Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distributed Bragg reflectors. Chemical Physics Letters, 2005, 411, 316-320.	1.2	2
130	Resist-assisted atom lithography with group III elements. Applied Physics B: Lasers and Optics, 2006, 85, 487-491.	1.1	2
131	Imprinting strategies for 100Ânm lithography on polyfluorene and poly(phenylenevinylene) derivatives and their blends. Materials Science and Engineering C, 2007, 27, 1428-1433.	3.8	2
132	Polymer nanofibers as novel light-emitting sources and lasing material. Proceedings of SPIE, 2013, , .	0.8	2
133	Control of photon transport properties in nanocomposite nanowires. Proceedings of SPIE, 2016, , .	0.8	2
134	Cryptographic Strainâ€Dependent Light Pattern Generators. Advanced Materials Technologies, 0, , 2101129.	3.0	2
135	Tuneable optical gain and broadband lasing driven in electrospun polymer fibers by high dye concentration. Journal of Materials Chemistry C, 2022, 10, 2042-2048.	2.7	2
136	LASER DEPOSITION OF YBCO FILMS ONTO Ni–BASED SUBSTRATES. International Journal of Modern Physics B, 2003, 17, 745-750.	1.0	1
137	Longitudinal coherence of organic-based microcavity lasers. Optics Express, 2008, 16, 10384.	1.7	1
138	Molecular Packing versus Strength and Effective Mass of the Emitting Exciton of β-1,1,4,4-Tetraphenyl-1,3-butadiene. Journal of Physical Chemistry C, 2014, 118, 8588-8594.	1.5	1
139	Alq ₃ coated silicon nanomembranes for cavity optomechanics. Proceedings of SPIE, 2016, ,	0.8	1
140	Photoactivated Refractive Index Anisotropy in Fluorescent Thiophene Derivatives. Journal of Physical Chemistry C, 2020, 124, 25465-25472.	1.5	1
141	Hybrid planar microresonators with organic and InGaAs active media. Optics Express, 2010, 18, 11650.	1.7	Ο
142	Electrospun light-emitting nanofibers as building blocks for photonics and electronics. SPIE Newsroom, 0, , .	0.1	0
143	Electrospun conjugated polymer nanofibers as miniaturized light sources: control of morphology, optical properties, and assembly. , 2014, , .		0
144	Light coupling in polymer nanofibers: from single-photon emission to random lasing. , 2017, , .		0

9

#	Article	IF	CITATIONS
145	Random optical media based on hybrid organic-inorganic nanowires: multiple scattering, field localization, and light diffusion. , 2017, , .		0

¹⁴⁶ 3D printing of optical materials: an investigation of the microscopic properties. , 2018, , .