Jing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4087276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Double-Cable Conjugated Polymers with Rigid Phenyl Linkers for Single-Component Organic Solar Cells. Macromolecules, 2022, 55, 2517-2523.	4.8	11
2	Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules, 2022, 55, 5964-5974.	4.8	13
3	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
4	Improving the performance of organic solar cells by side chain engineering of fused ring electron acceptors. Journal of Materials Chemistry C, 2021, 9, 6937-6943.	5.5	13
5	Fullerene as an additive for increasing the efficiency of organic solar cells to more than 17%. Journal of Colloid and Interface Science, 2021, 601, 70-77.	9.4	15
6	Hybrid Nonfused-Ring Electron Acceptors with Fullerene Pendant for High-Efficiency Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 1603-1611.	8.0	19
7	Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nature Communications, 2021, 12, 6679.	12.8	56
8	Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nature Communications, 2020, 11, 177.	12.8	360
9	A Fully Nonâ€fused Ring Acceptor with Planar Backbone and Nearâ€IR Absorption for High Performance Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 22714-22720.	13.8	184
10	Enhancing the Performance of Organic Solar Cells by Prolonging the Lifetime of Photogenerated Excitons. Advanced Materials, 2020, 32, e2003164.	21.0	42
11	Highâ€Efficiency Perovskite Quantum Dot Hybrid Nonfullerene Organic Solar Cells with Nearâ€Zero Driving Force. Advanced Materials, 2020, 32, e2002066.	21.0	46
12	Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties. Advanced Energy Materials, 2020, 10, 1904234.	19.5	402
13	Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells. Joule, 2019, 3, 1765-1781.	24.0	124
14	Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension. Journal of the American Chemical Society, 2019, 141, 19023-19031.	13.7	136
15	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	12.8	231
16	New roles of fused-ring electron acceptors in organic solar cells. Journal of Materials Chemistry A, 2019, 7, 4766-4770.	10.3	5
17	Organic Cavity Photodetectors Based on Nanometer-Thick Active Layers for Tunable Monochromatic Spectral Response. ACS Photonics, 2019, 6, 1393-1399.	6.6	27
18	Efficient Organic Solar Cells with Extremely High Open ircuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	19.5	117

JING WANG

#	Article	IF	CITATIONS
19	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 12574-12581.	10.3	65
20	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie, 0, , .	2.0	0