Luke A Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408726/publications.pdf

Version: 2024-02-01

109321 197818 20,671 51 35 49 citations h-index g-index papers 58 58 58 23184 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 2013, 152, 1173-1183.	28.9	4,090
2	CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 2013, 154, 442-451.	28.9	3,012
3	Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell, 2014, 159, 647-661.	28.9	2,176
4	Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System. Cell, 2013, 155, 1479-1491.	28.9	1,695
5	A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging. Cell, 2014, 159, 635-646.	28.9	1,245
6	CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8, 2180-2196.	12.0	930
7	A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell, 2016, 167, 1867-1882.e21.	28.9	819
8	Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds. Cell, 2015, 160, 339-350.	28.9	809
9	Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. ELife, $2016, 5, .$	6.0	609
10	CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355, .	12.6	566
11	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
12	CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell, 2016, 18, 541-553.	11.1	418
13	DNA Damage-Mediated Induction of a Chemoresistant Niche. Cell, 2010, 143, 355-366.	28.9	401
14	Nucleosomes impede Cas9 access to DNA in vivo and in vitro. ELife, 2016, 5, .	6.0	349
15	Versatile protein tagging in cells with split fluorescent protein. Nature Communications, 2016, 7, 11046.	12.8	331
16	Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 2021, 184, 2503-2519.e17.	28.9	312
17	Mapping the Genetic Landscape of Human Cells. Cell, 2018, 174, 953-967.e22.	28.9	226
18	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198

#	Article	IF	Citations
19	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	9.7	197
20	Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nature Chemical Biology, 2016, 12, 361-366.	8.0	157
21	Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science, 2019, 365, 786-793.	12.6	155
22	Defining principles of combination drug mechanisms of action. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E170-9.	7.1	145
23	Toxoplasma gondii Targets a Protein Phosphatase 2C to the Nuclei of Infected Host Cells. Eukaryotic Cell, 2007, 6, 73-83.	3.4	144
24	KRAS $\langle \sup \rangle$ G12C $\langle \sup \rangle$ inhibition produces a driver-limited state revealing collateral dependencies. Science Signaling, 2019, 12, .	3.6	123
25	A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes and Development, 2016, 30, 1811-1821.	5.9	119
26	A new era in functional genomics screens. Nature Reviews Genetics, 2022, 23, 89-103.	16.3	104
27	Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nature Communications, 2016, 7, 12009.	12.8	90
28	A Thioredoxin Family Protein of the Apicoplast Periphery Identifies Abundant Candidate Transport Vesicles in <i>Toxoplasma gondii</i> Lukaryotic Cell, 2008, 7, 1518-1529.	3.4	88
29	Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3892-900.	7.1	87
30	Exploration of Benzothiazole Rhodacyanines as Allosteric Inhibitors of Protein–Protein Interactions with Heat Shock Protein 70 (Hsp70). Journal of Medicinal Chemistry, 2018, 61, 6163-6177.	6.4	84
31	Next-generation libraries for robust RNA interference-based genome-wide screens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3384-91.	7.1	83
32	The Promise and Challenge of <i>In Vivo</i> Delivery for Genome Therapeutics. ACS Chemical Biology, 2018, 13, 376-382.	3.4	69
33	Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platformâ€. Hepatology, 2018, 68, 663-676.	7.3	63
34	Chemotherapeutic Resistance: Surviving Stressful Situations. Cancer Research, 2011, 71, 5062-5066.	0.9	49
35	A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure. PLoS Biology, 2018, 16, e2004624.	5.6	47
36	Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance. Cancer Research, 2020, 80, 1498-1511.	0.9	35

#	Article	IF	CITATIONS
37	Cellular response to small molecules that selectively stall protein synthesis by the ribosome. PLoS Genetics, 2019, 15, e1008057.	3.5	31
38	Context-specific roles for paracrine IL-6 in lymphomagenesis. Genes and Development, 2012, 26, 1758-1768.	5.9	27
39	Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.	9.7	22
40	An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer. Nature Communications, 2021, 12, 4601.	12.8	18
41	DNA-Dependent Protein Kinase Drives Prostate Cancer Progression through Transcriptional Regulation of the Wnt Signaling Pathway. Clinical Cancer Research, 2019, 25, 5608-5622.	7.0	17
42	Bcl-2 Family Genetic Profiling Reveals Microenvironment-Specific Determinants of Chemotherapeutic Response. Cancer Research, 2011, 71, 5850-5858.	0.9	15
43	Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. Annual Review of Cancer Biology, 2019, 3, 345-363.	4. 5	9
44	Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome. Cell Reports, 2021, 35, 109321.	6.4	8
45	A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities. Cell Chemical Biology, 2022, 29, 1303-1316.e3.	5.2	7
46	A Bounty of New Challenging Targets in Oncology for Chemical Discovery. Biochemistry, 2019, 58, 3328-3330.	2.5	6
47	Lethal clues to cancer-cell vulnerability. Nature, 2019, 568, 463-464.	27.8	5
48	Mapping cancer genetics at single-cell resolution. Science Translational Medicine, 2020, 12, .	12.4	3
49	A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments. Nature Communications, 2022, 13, 625.	12.8	2
50	Keap1ing an eye on Slc33A1. Nature Cancer, 2020, 1, 575-576.	13.2	0
51	A global cancer data integrator reveals principles of synthetic lethality, sex disparity and immunotherapy. Genome Medicine, 2021, 13, 167.	8.2	0