
Dipika Kaur Jaspal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4087135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 2010, 343, 463-473.	9.4	628
2	Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science, 2009, 337, 345-354.	9.4	467
3	Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. Journal of Colloid and Interface Science, 2010, 342, 518-527.	9.4	463
4	Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 2007, 148, 229-240.	12.4	435
5	Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. Journal of Hazardous Materials, 2009, 163, 568-577.	12.4	122
6	Applicability of waste materials—bottom ash and deoiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green. Journal of Colloid and Interface Science, 2008, 326, 8-17.	9.4	117
7	Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	83
8	Composites for wastewater purification: A review. Chemosphere, 2020, 246, 125788.	8.2	74
9	Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana. Journal of Environmental Management, 2016, 183, 786-793.	7.8	53
10	Artificial intelligence as an upcoming technology in wastewater treatment: a comprehensive review. Environmental Technology Reviews, 2021, 10, 177-187.	4.3	45
11	Adsorptive removal of Direct Red 81 dye from aqueous solution onto Argemone mexicana. Sustainable Environment Research, 2016, 26, 117-123.	4.2	32
12	Xanthium strumarium L. seed hull as a zero cost alternative for Rhodamine B dye removal. Journal of Environmental Management, 2017, 197, 498-506.	7.8	27
13	Study of decolorisation of binary dye mixture by response surface methodology. Journal of Environmental Management, 2017, 201, 316-326.	7.8	19
14	Efficacy of parthenium hysterophorus waste biomass compared with activated charcoal for the removal of CI Reactive Red 239 textile dye from wastewater. Coloration Technology, 2021, 137, 234-250.	1.5	16
15	Removal of Toxic Azo Dyes from Wastewater using Bottom Ash - Equilibrium Isothermal Modeling. Oriental Journal of Chemistry, 2012, 28, 955-961.	0.3	13
16	Wastewater Treatment Technologies: A Bibliometric Analysis. Science and Technology Libraries, 2020, 39, 383-394.	1.8	12
17	Evaluation of decoloration potential of Xanthium Strumarium seed hull for adsorption of Direct red 81 in aqueous solution. Environment, Development and Sustainability, 2017, 19, 1933-1951.	5.0	11
18	Kinetics studies on the adsorption of Methyl Orange and Metanil Yellow onto bottom ash: a comparative account. Water Science and Technology, 2019, 80, 1844-1850.	2.5	8

Dipika Kaur Jaspal

#	Article	IF	CITATIONS
19	OPTIMIZATION OF ADSORPTION PROCESS FOR REMOVAL OF SULPHONATED DI AZO TEXTILE DYE. Green Chemistry & Technology Letters, 2015, 1, 61-66.	0.3	8
20	Kinetics of Enolisation of Acetophenone and p-Bromoacetophenone: Comparative Studies. Bulletin of Chemical Reaction Engineering and Catalysis, 2013, 8, .	1.1	6
21	Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor. International Journal of Nanoscience, 2017, 16, 1650037.	0.7	6
22	Enolisation Kinetics of m-Nitro Acetophenone. Bulletin of Chemical Reaction Engineering and Catalysis, 2014, 9, .	1.1	5
23	Materials in constructed wetlands for wastewater remediation: A review. Water Environment Research, 2021, 93, 2853-2872.	2.7	5
24	Synthesis, characterization, and application of poly (N-ethyl aniline)/iron nanocomposite. Inorganic and Nano-Metal Chemistry, 2017, 47, 999-1003.	1.6	3
25	p-Chloroacetophenone: A study of enolization kinetics. Chemical Engineering Communications, 2017, 204, 1445-1451.	2.6	3
26	Adsorptive eradication of tartrazine from aqueous solutions onto doped polyaniline. Journal of the Serbian Chemical Society, 2020, 85, 251-263.	0.8	3
27	Elimination of cationic azodye from aqueous media using doped polyaniline (PANI): adsorption optimization and modeling. Canadian Journal of Chemistry, 2020, 98, 717-724.	1.1	3
28	Constructed Wetlands for removal of Phosphorus from Domestic Wastewater-A Patent Review. Sustainable Water Resources Management, 2022, 8, 1.	2.1	3
29	Amino acids as catalysts for the enolisation study of m-Methylacetophenone. Arabian Journal of Chemistry, 2019, 12, 1247-1251.	4.9	2
30	Green route synthesis of Li+ ion nanoparticles for application in large discharge capacity of batteries. Inorganic and Nano-Metal Chemistry, 2020, 50, 205-209.	1.6	2
31	Poly(o-Toluidine)-Li Nanocomposite: Facile Preparation and Utilization in Energy Storage Devices. Polymer-Plastics Technology and Materials, 2021, 60, 208-216.	1.3	2
32	Materials for phosphorous remediation: a review. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 1025-1037.	1.6	2
33	Poly (N-Methyl Aniline)-Li Nanocomposite as an Electrolyte for Rechargeable Battery: In-situ Recipe. E3S Web of Conferences, 2020, 170, 01018.	0.5	1
34	Integrated textile effluent treatment method. Water Environment Research, 2020, 93, 1060-1076.	2.7	1
35	Microbial consortia for industrial waste bioremediation: an insight to related patents. International Journal of Environmental Analytical Chemistry, 2023, 103, 8441-8453.	3.3	1
36	Batch and column studies using doped polymer for elimination of Sodium 4-[4-(dimethylamino) phenyl] diazenyl benzene-1-sulfonate from wastewater. International Journal of Environmental Analytical Chemistry, 2020, , 1-16.	3.3	0