Zhaohui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4086919/publications.pdf Version: 2024-02-01

7нлониц Ц

#	Article	IF	CITATIONS
1	An Amineâ€Functionalized Titanium Metal–Organic Framework Photocatalyst with Visibleâ€Lightâ€Induced Activity for CO ₂ Reduction. Angewandte Chemie - International Edition, 2012, 51, 3364-3367.	7.2	1,403
2	Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47, 8134-8172.	18.7	1,119
3	Visible-Light Photoreduction of CO ₂ in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States. Journal of the American Chemical Society, 2015, 137, 13440-13443.	6.6	927
4	Fe-Based MOFs for Photocatalytic CO ₂ Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways. ACS Catalysis, 2014, 4, 4254-4260.	5.5	702
5	Studies on Photocatalytic CO ₂ Reduction over NH ₂ â€Uioâ€66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 14279-14285.	1.7	553
6	Photocatalytic Degradation of RhB over TiO ₂ Bilayer Films: Effect of Defects and Their Location. Langmuir, 2010, 26, 9686-9694.	1.6	380
7	Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 2015, 51, 2056-2059.	2.2	360
8	Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Applied Catalysis B: Environmental, 2015, 164, 428-432.	10.8	345
9	Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy and Environmental Science, 2011, 4, 3985.	15.6	333
10	Fe-Based Metal–Organic Frameworks for Highly Selective Photocatalytic Benzene Hydroxylation to Phenol. ACS Catalysis, 2015, 5, 6852-6857.	5.5	324
11	Relationship between Oxygen Defects and the Photocatalytic Property of ZnO Nanocrystals in Nafion Membranes. Langmuir, 2009, 25, 1218-1223.	1.6	312
12	Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. International Journal of Hydrogen Energy, 2008, 33, 6484-6491.	3.8	301
13	Facile One-Pot Solvothermal Method to Synthesize Sheet-on-Sheet Reduced Graphene Oxide (RGO)/ZnIn ₂ S ₄ Nanocomposites with Superior Photocatalytic Performance. ACS Applied Materials & Interfaces, 2014, 6, 3483-3490.	4.0	274
14	MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Applied Catalysis B: Environmental, 2014, 144, 521-527.	10.8	263
15	Metal–organic frameworks (MOFs) for photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2017, 7, 4893-4904.	2.1	258
16	Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. Journal of Catalysis, 2007, 250, 12-18.	3.1	256
17	Noble Metals Can Have Different Effects on Photocatalysis Over Metal–Organic Frameworks (MOFs): A Case Study on M/NH ₂ â€MILâ€125(Ti) (M=Pt and Au). Chemistry - A European Journal, 2014, 20, 4780-4788.	1.7	247
18	Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies. Acta Materialia, 2007, 55, 4699-4705.	3.8	217

Zhaohui Li

#	Article	IF	CITATIONS
19	Exploring the Different Photocatalytic Performance for Dye Degradations over Hexagonal ZnIn ₂ S ₄ Microspheres and Cubic ZnIn ₂ S ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2012, 4, 2273-2279.	4.0	209
20	Molecular Quantum Cellular Automata Cells. Electric Field Driven Switching of a Silicon Surface Bound Array of Vertically Oriented Two-Dot Molecular Quantum Cellular Automata. Journal of the American Chemical Society, 2003, 125, 15250-15259.	6.6	203
21	A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. Journal of Membrane Science, 2013, 428, 11-16.	4.1	197
22	Multivalency Iodine Doped TiO ₂ :  Preparation, Characterization, Theoretical Studies, and Visible-Light Photocatalysis. Langmuir, 2008, 24, 3422-3428.	1.6	192
23	Highly efficient photocatalytic H2 evolution over MoS2/CdS-TiO2 nanofibers prepared by an electrospinning mediated photodeposition method. Applied Catalysis B: Environmental, 2017, 202, 374-380.	10.8	189
24	Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO ₂ reduction under visible light. Chemical Communications, 2015, 51, 2645-2648.	2.2	185
25	Mixed-Metal Strategy on Metal–Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Inorganic Chemistry, 2015, 54, 8639-8643.	1.9	182
26	Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catalysis Today, 2008, 131, 15-20.	2.2	180
27	A Templated Method to Bi ₂ WO ₆ Hollow Microspheres and Their Conversion to Double-Shell Bi ₂ O ₃ /Bi ₂ WO ₆ Hollow Microspheres with Improved Photocatalytic Performance. Inorganic Chemistry, 2012, 51, 6245-6250.	1.9	178
28	Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, 11189-11209.	1.7	176
29	Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2010, 95, 393-399.	10.8	175
30	Double-Solvent Method to Pd Nanoclusters Encapsulated inside the Cavity of NH ₂ –Uio-66(Zr) for Efficient Visible-Light-Promoted Suzuki Coupling Reaction. Journal of Physical Chemistry C, 2016, 120, 19744-19750.	1.5	169
31	Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and SrMoO4. Applied Catalysis B: Environmental, 2009, 91, 135-143.	10.8	149
32	Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011, 40, 2607.	1.6	149
33	Self-assembly of CPO-27-Mg/TiO 2 nanocomposite with enhanced performance for photocatalytic CO 2 reduction. Applied Catalysis B: Environmental, 2016, 183, 47-52.	10.8	142
34	Bi-functional NH ₂ -MIL-101(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds. Catalysis Science and Technology, 2015, 5, 1623-1628.	2.1	139
35	In situ IR study of surface hydroxyl species of dehydrated TiO2: towards understanding pivotal surface processes of TiO2 photocatalytic oxidation of toluene. Physical Chemistry Chemical Physics, 2012, 14, 9468.	1.3	127
36	Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. Journal of Catalysis, 2016, 342, 151-157.	3.1	126

#	Article	IF	CITATIONS
37	Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation. Applied Catalysis B: Environmental, 2009, 91, 67-72.	10.8	122
38	Rapid microwave-assisted syntheses of reduced graphene oxide (RGO)/ZnIn2S4 microspheres as superior noble-metal-free photocatalyst for hydrogen evolutions under visible light. Applied Catalysis B: Environmental, 2014, 160-161, 552-557.	10.8	121
39	Wide Band Gap p-Block Metal Oxyhydroxide InOOH:  A New Durable Photocatalyst for Benzene Degradation. Journal of Physical Chemistry C, 2007, 111, 18348-18352.	1.5	117
40	Self-Assembly of Semiconductor Nanoparticles/Reduced Graphene Oxide (RGO) Composite Aerogels for Enhanced Photocatalytic Performance and Facile Recycling in Aqueous Photocatalysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 277-282.	3.2	117
41	Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH ₂ –UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. Journal of Physical Chemistry C, 2017, 121, 7015-7024.	1.5	116
42	Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/ZnIn2S4 nanocomposites. Catalysis Science and Technology, 2013, 3, 1712.	2.1	110
43	Research on a gel polymer electrolyte for Li-ion batteries. Pure and Applied Chemistry, 2008, 80, 2553-2563.	0.9	107
44	TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis. Applied Catalysis B: Environmental, 2015, 174-175, 421-426.	10.8	107
45	Visible light-induced photocatalytic activity of delafossite AgMO2 (M=Al, Ga, In) prepared via a hydrothermal method. Applied Catalysis B: Environmental, 2009, 89, 551-556.	10.8	100
46	Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2018, 57, 8276-8286.	1.9	98
47	Efficient Photocatalytic Degradation of Volatile Organic Compounds by Porous Indium Hydroxide Nanocrystals. Environmental Science & Technology, 2010, 44, 1380-1385.	4.6	96
48	Chlorineâ€Radicalâ€Mediated Photocatalytic Activation of CH Bonds with Visible Light. Angewandte Chemie - International Edition, 2013, 52, 1035-1039.	7.2	96
49	One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Applied Surface Science, 2015, 358, 146-151.	3.1	94
50	From Mixed-Metal MOFs to Carbon-Coated Core–Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to Co _{<i>x</i>} Ni _{1–<i>x</i>} @Co _{<i>y</i>} Ni _{1–<i>y</i>} O@C for the Oxygen Evolution Reaction. Inorganic Chemistry, 2017, 56, 5203-5209.	1.9	93
51	Cu(ii)-and Co(ii)-containing metal–organic frameworks (MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions. RSC Advances, 2012, 2, 3309.	1.7	92
52	Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chinese Journal of Catalysis, 2019, 40, 335-342.	6.9	92
53	Template-Free Hydrothermal Synthesis and Photocatalytic Performances of Novel Bi ₂ SiO ₅ Nanosheets. Inorganic Chemistry, 2009, 48, 9072-9076.	1.9	91
54	Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method. Materials Letters, 2007, 61, 347-350.	1.3	88

#	Article	IF	CITATIONS
55	Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates, 2017, 43, 5169-5186.	1.3	88
56	A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles. Journal of Alloys and Compounds, 2009, 480, 684-688.	2.8	83
57	Catalytic Role of Cu Sites of Cu/MCM-41 in Phenol Hydroxylation. Langmuir, 2010, 26, 1362-1371.	1.6	80
58	Studies on In(OH)ySzSolid Solutions:  Syntheses, Characterizations, Electronic Structure, and Visible-Light-Driven Photocatalytic Activities. Journal of Physical Chemistry C, 2007, 111, 4727-4733.	1.5	79
59	PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. Journal of Catalysis, 2018, 361, 248-254.	3.1	79
60	Synthesis and electrochemical properties of Li2ZnTi3O8 fibers as an anode material for lithium-ion batteries. Electrochimica Acta, 2011, 56, 5343-5346.	2.6	78
61	Rational design of Z-scheme PtS-ZnIn2S4/WO3-MnO2 for overall photo-catalytic water splitting under visible light. Applied Catalysis B: Environmental, 2019, 258, 117948.	10.8	78
62	MoS ₂ /CQDs obtained by photoreduction for assembly of a ternary MoS ₂ /CQDs/ZnIn ₂ S ₄ nanocomposite for efficient photocatalytic hydrogen evolution under visible light. Journal of Materials Chemistry A, 2018, 6, 19735-19742.	5.2	77
63	ZnIn ₂ S ₄ : A Photocatalyst for the Selective Aerobic Oxidation of Amines to Imines under Visible Light. ChemCatChem, 2014, 6, 2540-2543.	1.8	76
64	Molecular QCA Cells. 1. Structure and Functionalization of an Unsymmetrical Dinuclear Mixed-Valence Complex for Surface Binding. Inorganic Chemistry, 2003, 42, 5707-5714.	1.9	74
65	Robust Ti―and Zrâ€Based Metalâ€Organic Frameworks for Photocatalysis. Chinese Journal of Chemistry, 2017, 35, 135-147.	2.6	74
66	Nanocrystalline Ternary Wide Band Gap p-Block Metal Semiconductor Sr ₂ Sb ₂ O ₇ :  Hydrothermal Syntheses and Photocatalytic Benzene Degradation. Journal of Physical Chemistry C, 2008, 112, 5850-5855.	1.5	73
67	CoFe2O4/C composite fibers as anode materials for lithium-ion batteries with stable and high electrochemical performance. Solid State Ionics, 2012, 215, 24-28.	1.3	73
68	Noble metal Free MoS2/ZnIn2S4 nanocomposite for acceptorless photocatalytic semi-dehydrogenation of 1,2,3,4-tetrahydroisoquinoline to produce 3,4-dihydroisoquinoline. Applied Catalysis B: Environmental, 2019, 252, 18-23.	10.8	72
69	Molecular QCA Cells. 2. Characterization of an Unsymmetrical Dinuclear Mixed-Valence Complex Bound to a Au Surface by an Organic Linker. Inorganic Chemistry, 2003, 42, 5715-5721.	1.9	70
70	Facile one-pot preparation of α-SnWO ₄ /reduced graphene oxide (RGO) nanocomposite with improved visible light photocatalytic activity and anode performance for Li-ion batteries. RSC Advances, 2013, 3, 1235-1242.	1.7	67
71	Orthorhombic Bi ₂ GeO ₅ Nanobelts: Synthesis, Characterization, and Photocatalytic Properties. Crystal Growth and Design, 2009, 9, 1775-1779.	1.4	66
72	Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New Journal of Chemistry, 2016, 40, 9170-9175.	1.4	65

Zhaohui Li

#	Article	IF	CITATIONS
73	Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Applied Catalysis B: Environmental, 2018, 234, 50-55.	10.8	61
74	Characterizations and properties of Eu3+-doped ZnWO4 prepared via a facile self-propagating combustion method. Materials Research Bulletin, 2008, 43, 1694-1701.	2.7	60
75	Visible-light-induced tandem reaction of o -aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. Journal of Catalysis, 2017, 349, 156-162.	3.1	59
76	Smallâ€&ized Bimetallic CuPd Nanoclusters Encapsulated Inside Cavity of NH ₂ â€UiOâ€66(Zr) with Superior Performance for Lightâ€Induced Suzuki Coupling Reaction. Small Methods, 2018, 2, 1800164.	4.6	59
77	Ternary Wide Band Gap p-Block Metal Semiconductor ZnGa ₂ O ₄ for Photocatalytic Benzene Degradation. Journal of Physical Chemistry C, 2008, 112, 20393-20397.	1.5	58
78	Photodeposition of Pd nanoparticles on ZnIn2S4 for efficient alkylation of amines and ketones' α-H with alcohols under visible light. Applied Catalysis B: Environmental, 2018, 237, 970-975.	10.8	55
79	Visible light initiated hydrothiolation of alkenes and alkynes over ZnIn ₂ S ₄ . Green Chemistry, 2019, 21, 2345-2351.	4.6	54
80	CoO <i>_x</i> -MC (MC = Mesoporous Carbon) for Highly Efficient Oxidation of 5-Hydroxymethylfurfural (5-HMF) to 2,5-Furandicarboxylic Acid (FDCA). ACS Sustainable Chemistry and Engineering, 2020, 8, 4801-4808.	3.2	53
81	Spinel LiCrTiO4 fibers as an advanced anode material in high performance lithium ion batteries. Solid State Ionics, 2013, 236, 43-47.	1.3	51
82	Microwave hydrothermal synthesis and upconversion properties of NaYF4:Yb3+, Tm3+ with microtube morphology. Materials Letters, 2009, 63, 1023-1026.	1.3	50
83	Efficient chemoselective hydrogenation of nitrobenzene to aniline, azoxybenzene and azobenzene over CQDs/Znln2S4 nanocomposites under visible light. Journal of Catalysis, 2020, 389, 241-246.	3.1	50
84	Coupling plasmonic noble metal with TiO2 for efficient photocatalytic transfer hydrogenation: M/TiO2 (M =â€ʿAu and Pt) for chemoselective transformation of cinnamaldehyde to cinnamyl alcohol under visible and 365â€`nm UV light. Applied Surface Science, 2018, 452, 279-285.	3.1	49
85	MOF-253-Supported Ru Complex for Photocatalytic CO ₂ Reduction by Coupling with Semidehydrogenation of 1,2,3,4-Tetrahydroisoquinoline (THIQ). Inorganic Chemistry, 2019, 58, 16574-16580.	1.9	49
86	Assembly of evenly distributed Au nanoparticles on thiolated reduced graphene oxide as an active and robust catalyst for hydrogenation of 4-nitroarenes. RSC Advances, 2014, 4, 11003-11011.	1.7	48
87	Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorganic Chemistry Communication, 2019, 104, 171-177.	1.8	47
88	3D Hierarchical Architectures of Sr2Sb2O7: Hydrothermal Syntheses, Formation Mechanisms, and Application in Aqueous-Phase Photocatalysis. Crystal Growth and Design, 2008, 8, 4469-4475.	1.4	46
89	Wide spectrum responsive CdS/NiTiO ₃ /CoS with superior photocatalytic performance for hydrogen evolution. Catalysis Science and Technology, 2017, 7, 2524-2530.	2.1	45
90	Preparation of NiS/ZnIn ₂ S ₄ as a superior photocatalyst for hydrogen evolution under visible light irradiation. Beilstein Journal of Nanotechnology, 2013, 4, 949-955.	1.5	43

ΖΗΑΟΗUΙ LΙ

#	Article	IF	CITATIONS
91	Photochemical synthesis of submicron- and nano-scale Cu2O particles. Journal of Colloid and Interface Science, 2009, 333, 791-799.	5.0	41
92	Cooperation in Cu-MOF-74-Derived Cu–Cu2O–C Nanocomposites To Enable Efficient Visible-Light-Initiated Phenylacetylene Coupling. Inorganic Chemistry, 2019, 58, 7997-8002.	1.9	40
93	Characterizations and photocatalytic activity of nanocrystalline La1.5Ln0.5Ti2O7 (Ln=Pr, Gd, Er) solid solutions prepared via a polymeric complex method. Journal of Molecular Catalysis A, 2006, 260, 56-61.	4.8	39
94	Hollow Rods of Nanocrystalline NiGa ₂ O ₄ : Hydrothermal Synthesis, Formation Mechanism, and Application in Photocatalysis. Crystal Growth and Design, 2008, 8, 4511-4516.	1.4	39
95	Controlled preparation of In2O3, InOOH and In(OH)3via a one-pot aqueous solvothermal route. New Journal of Chemistry, 2008, 32, 1843.	1.4	39
96	Synthesis of Li2CoTi3O8 fibers and their application to lithium-ion batteries. Electrochimica Acta, 2012, 77, 77-82.	2.6	39
97	Carbon quantum dots (CQDs) and Co(dmgH)2PyCl synergistically promote photocatalytic hydrogen evolution over hexagonal ZnIn2S4. Applied Surface Science, 2018, 462, 255-262.	3.1	39
98	Coupling photocatalytic CO ₂ reduction with benzyl alcohol oxidation to produce benzyl acetate over Cu ₂ O/Cu. Catalysis Science and Technology, 2018, 8, 2218-2223.	2.1	38
99	A novel polyvinylidene fluoride/microfiber composite gel polymer electrolyte with an interpenetrating network structure for lithium ion battery. Electrochimica Acta, 2014, 125, 450-456.	2.6	37
100	Hierarchical Architectured Ternary Nanostructures Photocatalysts with In(OH) ₃ Nanocube on ZnIn ₂ S ₄ /NiS Nanosheets for Photocatalytic Hydrogen Evolution. Solar Rrl, 2020, 4, 2000027.	3.1	37
101	Embedding of Mg-doped V ₂ O ₅ nanoparticles in a carbon matrix to improve their electrochemical properties for high-energy rechargeable lithium batteries. Journal of Materials Chemistry A, 2017, 5, 17432-17441.	5.2	36
102	Effect of M ²⁺ (M = Zn and Cu) Dopants on the Electronic Structure and Photocatalytic Activity of In(OH) _{<i>y</i>} S _{<i>z</i>} Solid Solution. Journal of Physical Chemistry C, 2008, 112, 16046-16051.	1.5	35
103	Morphology-controlled synthesis and efficient photocatalytic performances of a new promising photocatalyst Sr0.25H1.5Ta2O6·H2O. RSC Advances, 2011, 1, 458.	1.7	35
104	Cu/Cu ₂ O-MC (MC = Mesoporous Carbon) for Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol under Visible Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 11485-11492.	3.2	35
105	Controlled synthesis of pure and highly dispersive Cu(ii), Cu(i), and Cu(0)/MCM-41 with Cu[OCHMeCH2NMe2]2/MCM-41 as precursor. New Journal of Chemistry, 2009, 33, 2044.	1.4	33
106	Effect of Fluorination on Photocatalytic Degradation of Rhodamine B over In(OH)ySz: Promotion or Suppression?. Journal of Physical Chemistry C, 2011, 115, 460-467.	1.5	33
107	Visible light initiated oxidative coupling of alcohols and <i>o</i> -phenylenediamines to synthesize benzimidazoles over MIL-101(Fe) promoted by plasmonic Au. Green Chemistry, 2021, 23, 4161-4169. 	4.6	33
108	Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 3307-3313.	1.2	32

#	Article	IF	CITATIONS
109	Post-synthetic modifications (PSM) on metal–organic frameworks (MOFs) for visible-light-initiated photocatalysis. Dalton Transactions, 2021, 50, 13201-13215.	1.6	32
110	Structural, Dynamic, and Theoretical Studies of [AunPt2(PPh3)4(μ-S)2-n(μ3-S)nL][PF6]n [n = 1, L = PPh3; n = 2, L = Ph2PCH2PPh2, (C5H4PPh2)2Fe]. Inorganic Chemistry, 2000, 39, 5299-5305.	1.9	31
111	Synthesis of highly dispersed ceria–zirconia supported on ordered mesoporous alumina. Chemical Communications, 2011, 47, 5247.	2.2	31
112	Nanoplates of α-SnWO4 and SnW3O9 prepared via a facile hydrothermal method and their gas-sensing property. Sensors and Actuators B: Chemical, 2009, 140, 623-628.	4.0	30
113	Solar Photocatalytic Oxidation of Methane to Methanol with Water over RuO _{<i>x</i>} /ZnO/CeO ₂ Nanorods. ACS Sustainable Chemistry and Engineering, 2022, 10, 16-22.	3.2	30
114	Synthesis and Application in the CO Oxidation Conversion Reaction of Hexagonal Boron Nitride with High Surface Area. Journal of the American Ceramic Society, 2009, 92, 1347-1349.	1.9	29
115	Selective photocatalytic benzene hydroxylation to phenol using surface-modified Cu ₂ O supported on graphene. Journal of Materials Chemistry A, 2018, 6, 19782-19787.	5.2	29
116	Infrared Study of the NO Reduction by Hydrocarbons over Iron Sites with Low Nuclearity: Some New Insight into the Reaction Pathway. Journal of Physical Chemistry C, 2010, 114, 15713-15727.	1.5	28
117	A novel solution-phase approach to nanocrystalline niobates: selective syntheses of Sr0.4H1.2Nb2O6·H2O nanopolyhedrons and SrNb2O6 nanorods photocatalysts. Chemical Communications, 2010, 46, 1446.	2.2	28
118	A phase-inversion process to prepare porous LiAl0.1Mn1.9O4 spinel for aqueous rechargeable lithium batteries. Microporous and Mesoporous Materials, 2012, 162, 44-50.	2.2	28
119	Visible-light-initiated Sonogashira coupling reactions over CuO/TiO ₂ nanocomposites. Catalysis Science and Technology, 2019, 9, 377-383.	2.1	28
120	Syntheses, Crystal Structures, and Properties of Novel Heterooctametallic Clusters Na ₂ M' ₂ [M ₃ O ₄ (O ₂ CEt) ₈] _{2< (M' = Fe, Cr, Mo; M₃ = Mo₃, MoW₂, W₃). Chemistry - A European Journal, 1997, 3, 226-231.}	/sub> 1.7	27
121	Sr0.4H1.2Nb2O6·H2O nanopolyhedra: An efficient photocatalyst. Nanoscale, 2010, 2, 2262.	2.8	27
122	A facile hydrothermal method to BiSbO4 nanoplates with superior photocatalytic performance for benzene and 4-chlorophenol degradations. Dalton Transactions, 2011, 40, 5774.	1.6	27
123	Efficient visible-light-induced hydrogenation over composites of CdS and ruthenium carbonyl complexes. Journal of Catalysis, 2013, 304, 1-6.	3.1	27
124	Tuning of surface wettability of RGO-based aerogels for various adsorbates in water using different amino acids. Chemical Communications, 2014, 50, 10311-10314.	2.2	26
125	Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: Removal and transformation pathways. Chinese Journal of Catalysis, 2020, 41, 1511-1521.	6.9	26
126	Noble-metal-free Z-Scheme MoS2–CdS/WO3–MnO2 nanocomposites for photocatalytic overall water splitting under visible light. International Journal of Hydrogen Energy, 2020, 45, 17320-17328.	3.8	26

#	Article	IF	CITATIONS
127	Interpolymetallic Assembly of d8â~'d10Sulfide Aggregates from [Pt2(PPh3)4(μ-S)2] and Group 12 Metals. Inorganic Chemistry, 2003, 42, 8481-8488.	1.9	24
128	A graphene-hidden structure with diminished light shielding effect: more efficient graphene-involved composite photocatalysts. Catalysis Science and Technology, 2018, 8, 4734-4740.	2.1	24
129	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	3.1	24
130	Scanning tunneling microscopy and spectroscopy investigations of QCA molecules. Ultramicroscopy, 2003, 97, 55-63.	0.8	23
131	A Mononuclear Cyclopentadiene–Iron Complex Grafted in the Supercages of HY Zeolite: Synthesis, Structure, and Reactivity. Chemistry - A European Journal, 2007, 13, 7890-7899.	1.7	23
132	Preparations of C/SiC composites and their use as supports for Ru catalyst in ammonia synthesis. Journal of Molecular Catalysis A, 2009, 301, 79-83.	4.8	23
133	Nanocrystalline ZnSb2O6: Hydrothermal synthesis, electronic structure and photocatalytic activity. Journal of Molecular Catalysis A, 2011, 349, 80-85.	4.8	23
134	Studies on the improved thermal stability for doped ordered mesoporous Î ³ -alumina. Physical Chemistry Chemical Physics, 2013, 15, 5670.	1.3	23
135	Co(dmgH) ₂ pyCl as a noble-metal-free co-catalyst for highly efficient photocatalytic hydrogen evolution over hexagonal ZnIn ₂ S ₄ . RSC Advances, 2016, 6, 6072-6076.	1.7	23
136	Photocatalytic promoting dimethylformamide (DMF) decomposition to in-situ generation of self-supplied CO for carbonylative Suzuki reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337, 19-24.	2.0	23
137	Highly Efficient CO ₂ to CO Transformation over Cuâ€Based Catalyst Derived from a CuMgAl‣ayered Double Hydroxide (LDH). ChemCatChem, 2021, 13, 656-663.	1.8	22
138	Pt@MIL-101(Fe) for efficient visible light initiated coproduction of benzimidazoles and hydrogen from the reaction between o-Phenylenediamines and alcohols. Journal of Catalysis, 2022, 410, 156-163.	3.1	22
139	Heterometallic multinuclear Ptî—,M (M=Au, Ag) structural assemblies from dinuclear [Pt2(Pî—,P)2(μ-S)2] (Pî—,P=2PPh3, dppf). Journal of Organometallic Chemistry, 2003, 682, 73-78.	0.8	21
140	MOF derived C/Co@C with a "one-way-valve―like graphitic carbon layer for selective semi-hydrogenation of aromatic alkynes. Carbon, 2020, 160, 64-70.	5.4	21
141	Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery. Journal of Power Sources, 2018, 403, 103-108.	4.0	20
142	Replacement of Pd nanoparticles: Hydrogenation promoted by frustrated Lewis acid-base pairs in carbon quantum dots. Journal of Catalysis, 2020, 383, 304-310.	3.1	20
143	Double-sided modification of TiO2 spherical shell by graphene sheets with enhanced photocatalytic activity for CO2 reduction. Applied Surface Science, 2021, 537, 147991.	3.1	20
144	Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr). Applied Catalysis B: Environmental, 2022, 305, 121031.	10.8	20

ΖΗΑΟΗUΙ LΙ

#	Article	IF	CITATIONS
145	Rational Design of an Efficient S-Scheme Heterojunction of CdS/Bi ₂ WO ₆ –S Nanocomposites for Photocatalytic CO ₂ Reduction. Energy & Fuels, 2022, 36, 11524-11531.	2.5	19
146	{M3S2} heterometallic aggregates derived from Pt2(PPh3)4(μ-S)2: structural analysis of [MPt2X(PPh3)5(μ3-S)2]+ (M=Pd and Pt, X=Cl; M=Rh and Ir, X=CO) by X-ray single-crystal crystallography. Journal of Organometallic Chemistry, 1999, 575, 223-231.	0.8	17
147	Synthesis and characterization of Fe–Ce–MCM-41. Materials Letters, 2006, 60, 3221-3223.	1.3	17
148	Hydrothermal synthesis and performance of a novel nanocrystalline Pb ₂ Sn ₂ O ₆ photocatalyst. Nanotechnology, 2008, 19, 505705.	1.3	17
149	Ligand-stabilization of an unusual square-based pyramidal geometry of Cd(II) and Zn(II) in an heterometallic {MPt2S2} core (Mâ€=â€Cd, Zn). Dalton Transactions RSC, 2000, , 1027-1031.	2.3	16
150	Formation and structural relationship of electroactive PtII–HgII polymetallic sulfide aggregates. Dalton Transactions RSC, 2000, , 2901-2908.	2.3	16
151	Deposition Chemistry of Cu[OCH(Me)CH ₂ NMe ₂] ₂ over Mesoporous Silica. Chemistry of Materials, 2008, 20, 4565-4575.	3.2	16
152	Trinuclear iron cluster intercalated montmorillonite catalyst: Microstructure and photo-Fenton performance. Catalysis Today, 2011, 175, 362-369.	2.2	16
153	Synthetic, Structural, Electrochemical, and Theoretical Studies of Heterometallic Aggregates with a [Pt2(μ-S)2M] Core (M = Hg, Au). Inorganic Chemistry, 2002, 41, 6838-6845.	1.9	15
154	Thiol-initiated photocatalytic oxidative cleavage of the C bond in olefins and its extension to direct production of acetals from olefins. Catalysis Science and Technology, 2021, 11, 1000-1006.	2.1	15
155	Holey reduced graphene oxide nanosheets wrapped hollow FeS2@C spheres as a high-performance anode material for sodium-ion batteries. Journal of Power Sources, 2022, 536, 231438.	4.0	15
156	A general templated method to homogeneous and composition-tunable hybrid TiO2 nanocomposite fibers. Chemical Communications, 2011, 47, 2538.	2.2	14
157	Nanocrystalline CaSb2O5(OH)2 and Ca2Sb2O7: Controlled syntheses, electronic structures and photocatalytic activity. Applied Catalysis B: Environmental, 2012, 127, 205-211.	10.8	14
158	Fabrication and characterization of electrospun CdS-OH/polyacrylonitrile hybrid nanofibers. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1869-1876.	3.8	14
159	Engineering Surface Wettability of Reduced Graphene Oxide To Realize Efficient Interfacial Photocatalytic Benzene Hydroxylation in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 15682-15687.	3.2	14
160	Photocatalytic degradation of tetracycline hydrochloride over rugby-like β-Ga ₂ O ₃ with a 3D hierarchically assembled porous structure for environmental remediation. Catalysis Science and Technology, 2020, 10, 3315-3323.	2.1	14
161	Efficient visible light initiated hydrothiolations of alkenes/alkynes over Ir2S3/ZnIn2S4: Role of Ir2S3. Chinese Journal of Catalysis, 2021, 42, 409-416.	6.9	14
162	Metal–organic frameworks for photocatalysis. Interface Science and Technology, 2020, 31, 541-579.	1.6	13

#	Article	IF	CITATIONS
163	A citrate complex process to prepare nanocrystalline PbBi2Nb2O9 at a low temperature. Materials Letters, 2008, 62, 155-158.	1.3	12
164	SnS2 nanoplates/SnO2 nanotubes composites as efficient visible light-driven photocatalysts for Cr(VI) reduction. Research on Chemical Intermediates, 2017, 43, 5217-5228.	1.3	12
165	Coâ^'MOFâ€74@Cuâ^'MOFâ€74 Derived Bifunctional Coâ^'C@Cuâ^'C for Oneâ€Pot Production of 1, 4â€Diphenyl 3â€Butadiene from Phenylacetylene. ChemCatChem, 2020, 12, 6241-6247.	â€1, 1.8	12
166	Robust RGO composite aerogels with high adsorption capabilities for organic pollutants in water. Separation and Purification Technology, 2021, 257, 117876.	3.9	12
167	Engineering Metal-Organic Frameworks (MOFs) for Efficient Photocatalysis. Current Organic Chemistry, 2018, 22, 1825-1835.	0.9	12
168	Interconnected N-doped MXene spherical shells for highly efficient capacitive deionization. Environmental Science: Nano, 2022, 9, 204-213.	2.2	12
169	Nanocrystalline pyrochlore AgSbO3: Hydrothermal synthesis, photocatalytic activity and self-stable mechanism study. Applied Catalysis B: Environmental, 2012, 123-124, 78-83.	10.8	11
170	Assembly of RGO composite aerogels embedded with ultrasmall Au nanoparticles as an active and recyclable catalyst for reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 2020, 8, 103835.	3.3	11
171	Insight into Photoactive Sites for the Ethylene Oxidation on Commercial HZSM-5 Zeolites with Iron Impurities by UV Raman, X-ray Absorption Fine Structure, and Electron Paramagnetic Resonance Spectroscopies. Journal of Physical Chemistry C, 2007, 111, 5195-5202.	1.5	10
172	Low-temperature synthesis of regenerable TiO2â^'xNx nanocrystals in Nafion membrane and the promotive effect of Nafion in photocatalysis and N-doping. Journal of Materials Chemistry, 2009, 19, 6888.	6.7	10
173	A polymeric complex method to nanocrystalline BiCu2VO6 with visible light photocatalytic activity. Materials Letters, 2011, 65, 460-463.	1.3	10
174	Synthesis and electrochemical performance of three-dimensionally ordered macroporous LiCoO2. Journal of Solid State Electrochemistry, 2012, 16, 3079-3085.	1.2	10
175	Synthesis of ordered mesoporous Î ³ -alumina influenced by the interfacial protector. Materials Letters, 2012, 84, 44-47.	1.3	10
176	Carbon-encapsulated Si nanoparticle composite nanofibers with porous structure as lithium-ion battery anodes. Solid State Ionics, 2014, 261, 111-116.	1.3	10
177	<i>In situ</i> construction of layered graphene-based nanofiltration membranes with interlayer photocatalytic purification function and their application for water treatment. Environmental Science: Nano, 2019, 6, 2195-2202.	2.2	10
178	AN EXFOLIATED VANADIUM PENTOXIDE NANOPLATELET AND ITS ELECTROCHEMICAL PROPERTIES FOR LITHIUM-ION BATTERIES. Functional Materials Letters, 2012, 05, 1250019.	0.7	9
179	Excellent electrochemical performances of high-voltage LiNi0.5Mn1.5O4 hollow microspheres synthesized by a static co-precipitation method. Materials Letters, 2019, 248, 97-100.	1.3	9
180	Tailoring the Linear and Second-Order Nonlinear Optical Responses of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization: A First Principles Study. Journal of Physical Chemistry C, 2019, 123, 653-664.	1.5	9

ΖΗΑΟΗUΙ LΙ

#	Article	IF	CITATIONS
181	Lamellar MXene Nanofiltration Membranes for Electrostatic Modulation of Molecular Permeation: Implications for Fine Separation. ACS Applied Nano Materials, 2022, 5, 7373-7381.	2.4	9
182	A POROUS VANADIUM PENTOXIDE MATERIAL AND ITS ELECTROCHEMICAL PROPERTIES IN AQUEOUS ELECTROLYTE. Functional Materials Letters, 2011, 04, 61-64.	0.7	8
183	Photoactive sites in commercial HZSM-5 zeolite with iron impurities: An UV Raman study. Comptes Rendus Chimie, 2008, 11, 114-119.	0.2	7
184	Nanocomposite polymer electrolytes prepared by in situ polymerization on the surface of nanoparticles for lithium-ion polymer batteries. Pure and Applied Chemistry, 2010, 82, 2167-2174.	0.9	7
185	Performance improvement of Sn – Co alloy film anodes for lithium-ion batteries. Functional Materials Letters, 2014, 07, 1450050.	0.7	7
186	Efficient transfer hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) over Ni/NiO–MC (MC =) Tj ETQc	10 0 0 rgB ⁻	Г/Qverlock 1
187	Studies on nanocrystalline (Sr,Pb)TiO3 solid solutions prepared via a facile self-propagating combustion method. Journal of Physics and Chemistry of Solids, 2007, 68, 2326-2331.	1.9	6
188	GLYCINE-ASSISTED SOL–GEL SYNTHESIS OF LiFePO4/C CATHODE MATERIALS FOR LITHIUM-ION BATTERIES. Functional Materials Letters, 2010, 03, 217-221.	0.7	6
189	Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti 3 C 2 T x /CdS under Visible Light. Chemistry - an Asian Journal, 2021, 16, 2932-2938.	1.7	6
190	Nanocrystalline GaSbO4 with high surface area prepared via a facile hydrothermal method and its photocatalytic activity study. Journal of Alloys and Compounds, 2012, 522, 144-148.	2.8	5
191	CYCLIC IMPROVEMENT OF LINIO.5Mn1.5O4 POLYHEDRAL SPINELS FOR 5.0 V LITHIUM ION BATTERIES. Functional Materials Letters, 2010, 03, 185-188.	0.7	4
192	EXCELLENT CYCLING PERFORMANCE OF THREE-DIMENSIONAL-ORDERED MACROPOROUS NiFe₂O₄ AS ANODE MATERIAL FOR LITHIUM ION BATTERIES. Functional Materials Letters, 2011, 04, 327-331.	0.7	4
193	SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF Li2FeSiO4/C AS CATHODE MATERIALS FOR LITHIUM-ION BATTERIES. Functional Materials Letters, 2013, 06, 1350029.	0.7	4
194	An investigation of a novel MnO ₂ network-Ni/PVDF double shell/core membrane as an anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 18699-18704.	1.3	4
195	A new 3-D Gd-Cu heterometallic polymer [Gd2Cu3(bpy)2-(ip)6]·6H2O with a non-interpenetrated α-Po net. Science Bulletin, 2009, 54, 4272-4276.	4.3	3
196	Structure directing influence of precursor compositions on the formation of macroscopic inorganic oxide nanocomposite fibers. Journal of Materials Chemistry, 2009, 19, 1908.	6.7	3
197	Novel-shaped LiNi1/3Co1/3Mn1/3O2 prepared by a hydroxide coprecipitation method. Pure and Applied Chemistry, 2008, 80, 2537-2542.	0.9	2
198	Metal-Organic Frameworks (MOFs) for Photocatalytic Organic Transformations. Nanostructure Science and Technology, 2016, , 523-535.	0.1	1

0

#	Article	IF	CITATIONS
199	Frontispiece: Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, .	1.7	1

Light-induced organic transformations over some MOF materials. , 2020, , 339-352.