## Yan-Qing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4086914/publications.pdf Version: 2024-02-01



YAN-OING LL

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Absorption Spectrumâ€Compensating Configuration Reduces the Energy Loss of Nonfullerene Organic<br>Solar Cells. Advanced Functional Materials, 2022, 32, 2109735.                                                        | 14.9 | 7         |
| 2  | Interface engineering improves the performance of green perovskite light-emitting diodes. Journal of<br>Materials Chemistry C, 2022, 10, 2998-3005.                                                                      | 5.5  | 16        |
| 3  | <scp>Hotâ€electron emissionâ€driven</scp> energy recycling in transparent plasmonic electrode for<br>organic solar cells. InformaÄnÃ-Materiály, 2022, 4, .                                                               | 17.3 | 3         |
| 4  | Exploration of the Defect Passivation in Perovskite Materials Using Organic Spacer Cations. Advanced<br>Materials Interfaces, 2022, 9, .                                                                                 | 3.7  | 4         |
| 5  | Management of Multiâ€Energyâ€Transfer Channels and Exciton Harvesting for Powerâ€Efficient White<br>Thermally Activated Delayed Fluorescence Diodes. Advanced Optical Materials, 2022, 10, .                             | 7.3  | 4         |
| 6  | Interfacial Potassiumâ€Guided Grain Growth for Efficient Deepâ€Blue Perovskite Lightâ€Emitting Diodes.<br>Advanced Functional Materials, 2021, 31, 2006736.                                                              | 14.9 | 93        |
| 7  | Surface-induced phase engineering and defect passivation of perovskite nanograins for efficient red light-emitting diodes. Nanoscale, 2021, 13, 340-348.                                                                 | 5.6  | 22        |
| 8  | Deepâ€Blue Emission: Interfacial Potassiumâ€Guided Grain Growth for Efficient Deepâ€Blue Perovskite<br>Lightâ€Emitting Diodes (Adv. Funct. Mater. 6/2021). Advanced Functional Materials, 2021, 31, 2170039.             | 14.9 | 2         |
| 9  | The Strategies for Highâ€Performance Singleâ€Emissiveâ€Layer White Organic Lightâ€Emitting Diodes. Laser<br>and Photonics Reviews, 2021, 15, 2000474.                                                                    | 8.7  | 22        |
| 10 | Strategies to Improve Luminescence Efficiency and Stability of Blue Perovskite Lightâ€Emitting Devices.<br>Small Science, 2021, 1, 2000048.                                                                              | 9.9  | 33        |
| 11 | Efficient Circularly Polarized Electroluminescence from Chiral Thermally Activated Delayed<br>Fluorescence Emitters Featuring Symmetrical and Rigid Coplanar Acceptors. Advanced Optical<br>Materials, 2021, 9, 2100017. | 7.3  | 46        |
| 12 | High-Light-Tolerance PbI <sub>2</sub> Boosting the Stability and Efficiency of Perovskite Solar Cells.<br>ACS Applied Materials & Interfaces, 2021, 13, 24692-24701.                                                     | 8.0  | 21        |
| 13 | Unraveling the Role of Crystallization Dynamics on Luminescence Characteristics of Perovskite<br>Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2021, 15, 2100023.                                                 | 8.7  | 36        |
| 14 | Uniform Stepped Interfacial Energy Level Structure Boosts Efficiency and Stability of<br>CsPbl <sub>2</sub> Br Solar Cells. Advanced Functional Materials, 2021, 31, 2103316.                                            | 14.9 | 18        |
| 15 | Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Lightâ€Emitting<br>Diodes. Advanced Functional Materials, 2021, 31, 2103870.                                                       | 14.9 | 72        |
| 16 | Interfacial "Anchoring Effect―Enables Efficient Largeâ€Area Skyâ€Blue Perovskite Lightâ€Emitting Diodes.<br>Advanced Science, 2021, 8, e2102213.                                                                         | 11.2 | 35        |
| 17 | Micro–Nanostructureâ€Assisted Luminescence in Perovskite Devices. Small Structures, 2021, 2, 2100084                                                                                                                     | 12.0 | 7         |
| 18 | Minimizing Optical Energy Losses for Longâ€Lifetime Perovskite Lightâ€Emitting Diodes. Advanced<br>Functional Materials, 2021, 31, 2105813.                                                                              | 14.9 | 28        |

Yan-Qing Li

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Lightâ€Emitting<br>Diodes (Adv. Funct. Mater. 45/2021). Advanced Functional Materials, 2021, 31, 2170331. | 14.9 | 4         |
| 20 | Improving the efficiency and stability of inorganic red perovskite light-emitting diodes using traces of zinc ions. Journal of Materials Chemistry C, 2021, 9, 16682-16692.                     | 5.5  | 6         |
| 21 | Exploring Red, Green, and Blue Lightâ€Activated Degradation of Perovskite Films and Solar Cells for<br>Near Space Applications. Solar Rrl, 2020, 4, 1900394.                                    | 5.8  | 11        |
| 22 | High‣fficiency White Organic Lightâ€Emitting Diodes Based on All Nondoped Thermally Activated<br>Delayed Fluorescence Emitters. Advanced Materials Interfaces, 2020, 7, 1901758.                | 3.7  | 12        |
| 23 | Recent advances in interface engineering of all-inorganic perovskite solar cells. Nanoscale, 2020, 12,<br>17149-17164.                                                                          | 5.6  | 20        |
| 24 | Biomimetic Electrodes for Flexible Organic Solar Cells with Efficiencies over 16%. Advanced Optical Materials, 2020, 8, 2000669.                                                                | 7.3  | 47        |
| 25 | Rational Interface Engineering for Efficient Flexible Perovskite Light-Emitting Diodes. ACS Nano, 2020,<br>14, 6107-6116.                                                                       | 14.6 | 100       |
| 26 | Effects of the relative position and number of donors and acceptors on the properties of TADF materials. Journal of Materials Chemistry C, 2020, 8, 9476-9494.                                  | 5.5  | 50        |
| 27 | Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells. Organic Electronics, 2019, 71, 65-71.                                   | 2.6  | 14        |
| 28 | The modified PEDOT:PSS as cathode interfacial layer for scalable organic solar cells. Organic Electronics, 2019, 71, 143-149.                                                                   | 2.6  | 7         |
| 29 | Highâ€Efficiency Perovskite Lightâ€Emitting Diodes with Synergetic Outcoupling Enhancement. Advanced<br>Materials, 2019, 31, e1901517.                                                          | 21.0 | 188       |
| 30 | Efficient CsPbBr <sub>3</sub> Perovskite Lightâ€Emitting Diodes Enabled by Synergetic Morphology<br>Control. Advanced Optical Materials, 2019, 7, 1801534.                                      | 7.3  | 117       |
| 31 | Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films. Organic Electronics, 2019, 67, 19-25.                                                                        | 2.6  | 44        |
| 32 | Singleâ€Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency. Advanced Materials, 2015, 27, 1035-1041.                                                                        | 21.0 | 1,004     |
| 33 | Efficient pure-red perovskite light-emitting diodes using dual-Lewis-base molecules for interfacial modification. Journal of Materials Chemistry C, 0, , .                                      | 5.5  | 15        |