
Brent R Stockwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4086894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of Anticancer Agents of Diverse Natural Origin. Journal of Natural Products, 2022, 85, 702-719.	1.5	19
2	Machine Learning Classifies Ferroptosis and Apoptosis Cell Death Modalities with TfR1 Immunostaining. ACS Chemical Biology, 2022, 17, 654-660.	1.6	29
3	The structure of erastin-bound xCT–4F2hc complexÂreveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Research, 2022, 32, 687-690.	5.7	48
4	Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nature Communications, 2022, 13, 1891.	5.8	45
5	Characterization of a patient-derived variant of GPX4 for precision therapy. Nature Chemical Biology, 2022, 18, 91-100.	3.9	41
6	Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metabolism, 2022, 34, 761-774.e9.	7.2	36
7	A Study in Blue: Secondary Copperâ€Rich Minerals and Their Associated Bacterial Diversity in Icelandic Lava Tubes. Earth and Space Science, 2022, 9, .	1.1	2
8	Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185, 2401-2421.	13.5	741
9	Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biology, 2021, 38, 101744.	3.9	67
10	Ferroptosis: mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology, 2021, 22, 266-282.	16.1	2,178
11	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	13.5	135
12	Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nature Communications, 2021, 12, 2016.	5.8	65
13	Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 2021, 39, 866-882.e11.	7.7	159
14	Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. Journal of Virology, 2021, 95, e0237420.	1.5	27
15	Photon Upconversion Hydrogels for 3D Optogenetics. Advanced Functional Materials, 2021, 31, 2010907.	7.8	19
16	iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nature Communications, 2021, 12, 3644.	5.8	153
17	A roadmap to creating ferroptosis-based medicines. Nature Chemical Biology, 2021, 17, 1113-1116.	3.9	25
18	Development of therapies for rare genetic disorders of GPX4: roadmap and opportunities. Orphanet Journal of Rare Diseases, 2021, 16, 446.	1.2	11

#	Article	IF	CITATIONS
19	GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 2020, 6, 41-53.	5.3	551
20	Leveraging insights into cancer metabolism—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 5-13.	1.8	3
21	Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers. ACS Chemical Biology, 2020, 15, 469-484.	1.6	280
22	Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Reports, 2020, 30, 3411-3423.e7.	2.9	414
23	Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends in Cell Biology, 2020, 30, 478-490.	3.6	624
24	Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368, 85-89.	6.0	692
25	Mesenchymal subtype neuroblastomas are addicted to TGF-βR2/HMGCR-driven protein geranylgeranylation. Scientific Reports, 2020, 10, 10748.	1.6	3
26	Energy-stress-mediated AMPK activation inhibits ferroptosis. Nature Cell Biology, 2020, 22, 225-234.	4.6	561
27	MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes and Development, 2020, 34, 526-543.	2.7	156
28	Time Course of Changes in Sorafenibâ€Treated Hepatocellular Carcinoma Cells Suggests Involvement of Phosphoâ€Regulated Signaling in Ferroptosis Induction. Proteomics, 2020, 20, 2000006.	1.3	21
29	The Chemistry and Biology of Ferroptosis. Cell Chemical Biology, 2020, 27, 365-375.	2.5	204
30	SnapShot: Ferroptosis. Cell, 2020, 181, 1188-1188.e1.	13.5	180
31	p21 can be a barrier to ferroptosis independent of p53. Aging, 2020, 12, 17800-17814.	1.4	42
32	Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery. Oncotarget, 2020, 11, 443-451.	0.8	16
33	Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature, 2019, 572, 402-406.	13.7	617
34	A Physiological Function for Ferroptosis in Tumor Suppression by the Immune System. Cell Metabolism, 2019, 30, 14-15.	7.2	147
35	Development of MAP4 Kinase Inhibitors as Motor Neuron-Protecting Agents. Cell Chemical Biology, 2019, 26, 1703-1715.e37.	2.5	36
36	K-Ras ^{G12D} Has a Potential Allosteric Small Molecule Binding Site. Biochemistry, 2019, 58, 2542-2554.	1.2	33

#	Article	IF	CITATIONS
37	Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chemical Biology, 2019, 26, 623-633.e9.	2.5	399
38	Dawn of a New Era of Targeted Antioxidant Therapies. Cell Chemical Biology, 2019, 26, 1483-1485.	2.5	1
39	A Stem Cell-Based Screening Platform Identifies Compounds that Desensitize Motor Neurons to Endoplasmic Reticulum Stress. Molecular Therapy, 2019, 27, 87-101.	3.7	39
40	The Hallmarks of Ferroptosis. Annual Review of Cancer Biology, 2019, 3, 35-54.	2.3	370
41	The development of the concept of ferroptosis. Free Radical Biology and Medicine, 2019, 133, 130-143.	1.3	623
42	A powerful cell-protection system prevents cell death by ferroptosis. Nature, 2019, 575, 597-598.	13.7	60
43	Abstract C005: NT5C2 small molecule inhibitor for the reversal of 6-MP resistance in acute lymphoblastic leukemia. , 2019, , .		Ο
44	Small molecule modulator of protein disulfide isomerase attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum stress in a mouse model of Huntington's disease. Human Molecular Genetics, 2018, 27, 1545-1555.	1.4	38
45	Determination of the Subcellular Localization and Mechanism of Action of Ferrostatins in Suppressing Ferroptosis. ACS Chemical Biology, 2018, 13, 1013-1020.	1.6	229
46	Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood, 2018, 131, 2581-2593.	0.6	119
47	Toward a Microparticle-Based System for Pooled Assays of Small Molecules in Cellular Contexts. ACS Chemical Biology, 2018, 13, 761-771.	1.6	2
48	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
49	Design of Small Molecules That Compete with Nucleotide Binding to an Engineered Oncogenic KRAS Allele. Biochemistry, 2018, 57, 1380-1389.	1.2	6
50	FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nature Chemical Biology, 2018, 14, 507-515.	3.9	471
51	Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Scientific Reports, 2018, 8, 5155.	1.6	223
52	Targeting Dependency on the GPX4 Lipid Peroxide Repair Pathway for Cancer Therapy. Biochemistry, 2018, 57, 2059-2060.	1.2	68
53	Copper-Binding Small Molecule Induces Oxidative Stress and Cell-Cycle Arrest in Glioblastoma-Patient-Derived Cells. Cell Chemical Biology, 2018, 25, 585-594.e7.	2.5	59
54	Regulation of lipid peroxidation and ferroptosis in diverse species. Genes and Development, 2018, 32, 602-619.	2.7	339

#	Article	IF	CITATIONS
55	Unsolved mysteries: How does lipid peroxidation cause ferroptosis?. PLoS Biology, 2018, 16, e2006203.	2.6	487
56	Ligand binding to a remote site thermodynamically corrects the F508del mutation in the human cystic fibrosis transmembrane conductance regulator. Journal of Biological Chemistry, 2018, 293, 17685-17704.	1.6	9
57	Abstract 2666: Subtype-selective lethal molecules disrupt the regulatory module that drives high-risk neuroblastoma. , 2018, , .		0
58	Heat stress induces ferroptosis-like cell death in plants. Journal of Cell Biology, 2017, 216, 463-476.	2.3	162
59	Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 2017, 482, 419-425.	1.0	1,148
60	Development of a primary microglia screening assay and its use to characterize inhibition of system xc- by erastin and its analogs. Biochemistry and Biophysics Reports, 2017, 9, 266-272.	0.7	11
61	Multivalent Small-Molecule Pan-RAS Inhibitors. Cell, 2017, 168, 878-889.e29.	13.5	213
62	Lipid homeostasis and regulated cell death. Current Opinion in Chemical Biology, 2017, 39, 83-89.	2.8	105
63	Group Problem Solving in Class Improves Undergraduate Learning. ACS Central Science, 2017, 3, 614-620.	5.3	11
64	Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cellular and Molecular Life Sciences, 2017, 74, 3631-3645.	2.4	261
65	Heavy metal suicide. American Journal of Physiology - Renal Physiology, 2017, 313, F959-F960.	1.3	Ο
66	Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171, 273-285.	13.5	4,081
67	Transforming Lipoxygenases: PE-Specific Enzymes in Disguise. Cell, 2017, 171, 501-502.	13.5	12
68	FERROPTOSIS: MECHANISMS AND THERAPEUTIC APPLICATIONS. Free Radical Biology and Medicine, 2017, 112, 7.	1.3	2
69	Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547, 453-457.	13.7	1,194
70	Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13, 81-90.	3.9	1,589
71	Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2017, 2, e90777.	2.3	483
72	Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nature Chemical Biology, 2016, 12, 497-503.	3.9	671

#	Article	IF	CITATIONS
73	Clickable Poly(ionic liquids): A Materials Platform for Transfection. Angewandte Chemie, 2016, 128, 12570-12574.	1.6	4
74	A Mitochondrial-Targeted Nitroxide Is a Potent Inhibitor of Ferroptosis. ACS Central Science, 2016, 2, 653-659.	5.3	167
75	Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth. Cell Reports, 2016, 16, 545-558.	2.9	45
76	Clickable Poly(ionic liquids): A Materials Platform for Transfection. Angewandte Chemie - International Edition, 2016, 55, 12382-12386.	7.2	47
77	Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4966-75.	3.3	1,322
78	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
79	Regulated necrosis: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 2016, 15, 348-366.	21.5	481
80	Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 2016, 26, 165-176.	3.6	1,807
81	Cell-Line Selectivity Improves the Predictive Power of Pharmacogenomic Analyses and Helps Identify NADPH as Biomarker for Ferroptosis Sensitivity. Cell Chemical Biology, 2016, 23, 225-235.	2.5	217
82	tRNA synthase suppression activates <i>de novo</i> cysteine synthesis to compensate for cystine and glutathione deprivation during ferroptosis. Molecular and Cellular Oncology, 2016, 3, e1091059.	0.3	22
83	Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death and Differentiation, 2016, 23, 270-278.	5.0	346
84	Discovery of Anticancer Agents of Diverse Natural Origin. Anticancer Research, 2016, 36, 5623-5638.	0.5	94
85	Structural Elucidation of a Small Molecule Inhibitor of Protein Disulfide Isomerase. ACS Medicinal Chemistry Letters, 2015, 6, 966-971.	1.3	15
86	Elucidating Compound Mechanism of Action by Network Perturbation Analysis. Cell, 2015, 162, 441-451.	13.5	278
87	High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma. ACS Medicinal Chemistry Letters, 2015, 6, 948-952.	1.3	30
88	Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 2015, 10, 1604-1609.	1.6	629
89	Small molecule-induced oxidation of protein disulfide isomerase is neuroprotective. Proceedings of the United States of America, 2015, 112, E2245-52.	3.3	82
90	Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4787-4792.	1.0	93

#	Article	IF	CITATIONS
91	Blended Learning Improves Science Education. Cell, 2015, 162, 933-936.	13.5	198
92	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
93	Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. ELife, 2014, 3, e02523.	2.8	1,296
94	Multidimensional Profiling in the Investigation of Small-Molecule-Induced Cell Death. Methods in Enzymology, 2014, 545, 265-302.	0.4	9
95	The role of iron and reactive oxygen species in cell death. Nature Chemical Biology, 2014, 10, 9-17.	3.9	1,685
96	Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 2014, 156, 317-331.	13.5	4,187
97	Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 2014, 16, 1180-1191.	4.6	2,241
98	Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16836-16841.	3.3	801
99	Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nature Reviews Immunology, 2014, 14, 759-767.	10.6	404
100	Small Molecule that Reverses Dexamethasone Resistance in T-cell Acute Lymphoblastic Leukemia (T-ALL). ACS Medicinal Chemistry Letters, 2014, 5, 754-759.	1.3	14
101	Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models. Journal of the American Chemical Society, 2014, 136, 4551-4556.	6.6	738
102	Unraveling the mechanism of cell death induced by chemical fibrils. Nature Chemical Biology, 2014, 10, 969-976.	3.9	43
103	An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules. Cell, 2013, 154, 1151-1161.	13.5	615
104	Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity. Experimental Cell Research, 2013, 319, 1759-1773.	1.2	12
105	Small Molecule Screen Reveals Regulation of Survival Motor Neuron Protein Abundance by Ras Proteins. ACS Chemical Biology, 2013, 8, 914-922.	1.6	9
106	Protein Folding Drives Disulfide Formation. Cell, 2012, 151, 794-806.	13.5	158
107	Identification of Simple Compounds with Microtubule-Binding Activity That Inhibit Cancer Cell Growth with High Potency. ACS Medicinal Chemistry Letters, 2012, 3, 35-38.	1.3	67
108	Design and synthesis of Pictet–Spengler condensation products that exhibit oncogenic-RAS synthetic lethality and induce non-apoptotic cell death. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5707-5713.	1.0	31

#	Article	IF	CITATIONS
109	Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 2012, 149, 1060-1072.	13.5	9,007
110	Therapeutic approaches to preventing cell death in Huntington disease. Progress in Neurobiology, 2012, 99, 262-280.	2.8	24
111	Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1822-1826.	1.0	157
112	Functional Model of Metabolite Gating by Human Voltage-Dependent Anion Channel 2. Biochemistry, 2011, 50, 3408-3410.	1.2	42
113	Unraveling the Mechanisms of Oxidative Folding using Single Molecule Force Spectroscopy. Biophysical Journal, 2011, 100, 480a.	0.2	0
114	Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E771-80.	3.3	113
115	Discovery of Mdm2-MdmX E3 Ligase Inhibitors Using a Cell-Based Ubiquitination Assay. Cancer Discovery, 2011, 1, 312-325.	7.7	82
116	Privileged scaffolds for library design and drug discovery. Current Opinion in Chemical Biology, 2010, 14, 347-361.	2.8	1,228
117	Towards patient-based cancer therapeutics. Nature Biotechnology, 2010, 28, 904-906.	9.4	65
118	Engineering drug combinations. Nature Chemical Biology, 2010, 6, 318-319.	3.9	9
119	Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nature Chemical Biology, 2010, 6, 900-906.	3.9	277
120	Mutant Huntingtin Alters Cell Fate in Response to Microtubule Depolymerization via the GEF-H1-RhoA-ERK Pathway*. Journal of Biological Chemistry, 2010, 285, 37445-37457.	1.6	23
121	The Immortal Life of Henrietta Lacks by Rebecca Skloot; Review of the Book, and an Interview with the Author. Oncology Times, 2010, 32, 44-48.	0.1	0
122	The Immortal Life of Henrietta Lacks, by Rebecca Skloot. Nephrology Times, 2010, 3, 12-13.	0.0	1
123	Identifying druggable disease-modifying gene products. Current Opinion in Chemical Biology, 2009, 13, 549-555.	2.8	91
124	A Mammalian Cell-Based Assay for Screening Inhibitors of RNA Cleavage. Methods in Molecular Biology, 2009, 540, 335-347.	0.4	2
125	Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. Chemistry and Biology, 2008, 15, 234-245.	6.2	1,200
126	Combination chemical genetics. Nature Chemical Biology, 2008, 4, 674-681.	3.9	158

#	Article	IF	CITATIONS
127	Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biology, 2008, 9, R92.	13.9	77
128	Gene expression-based screening for inhibitors of PDGFR signaling. Genome Biology, 2008, 9, R47.	13.9	19
129	A novel role for jun N-terminal Kinase signaling in olfactory sensory neuronal death. Molecular and Cellular Neurosciences, 2008, 38, 518-525.	1.0	8
130	Neurobiological Applications of Small Molecule Screening. Chemical Reviews, 2008, 108, 1774-1786.	23.0	15
131	High Throughput Screening for Neurodegeneration and Complex Disease Phenotypes. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 238-248.	0.6	28
132	Inhibitors of metabolism rescue cell death in Huntington's disease models. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14525-14530.	3.3	55
133	Chemical combination effects predict connectivity in biological systems. Molecular Systems Biology, 2007, 3, 80.	3.2	243
134	Identification of Potential Therapeutic Drugs for Huntington's Disease using Caenorhabditis elegans. PLoS ONE, 2007, 2, e504.	1.1	127
135	Chemical genetic approaches to probing cell death. Current Opinion in Chemical Biology, 2007, 11, 83-87.	2.8	28
136	Selective inhibitors of death in mutant huntingtin cells. , 2007, 3, 99-100.		41
137	RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007, 447, 865-869.	13.7	1,104
138	A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen. Cell, 2006, 124, 1283-1298.	13.5	1,603
139	Renewing embryonic stem cells. Nature, 2006, 444, 692-693.	13.7	8
140	Preventing protein secretion with chemical glue. Nature Chemical Biology, 2006, 2, 7-8.	3.9	7
141	Enzyme Annotation with Chemical Tools. Chemistry and Biology, 2006, 13, 1013-1014.	6.2	2
142	Using small molecules to overcome drug resistance induced by a viral oncogene. Cancer Cell, 2006, 9, 133-146.	7.7	21
143	Biologically active molecules that reduce polyglutamine aggregation and toxicity. Human Molecular Genetics, 2006, 15, 2114-2124.	1.4	70
144	Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. Rna, 2006, 12, 797-806.	1.6	57

#	Article	IF	CITATIONS
145	Chemical Genetics and Orphan Genetic Diseases. Chemistry and Biology, 2005, 12, 1063-1073.	6.2	16
146	Multicomponent therapeutics for networked systems. Nature Reviews Drug Discovery, 2005, 4, 71-78.	21.5	665
147	ADVANCES IN CHEMICAL GENETICS. Annual Review of Genomics and Human Genetics, 2005, 6, 261-286.	2.5	59
148	From The Cover: Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16144-16149.	3.3	141
149	PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research, 2004, 32, W83-W88.	6.5	360
150	Gene expression–based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nature Genetics, 2004, 36, 257-263.	9.4	276
151	Exploring biology with small organic molecules. Nature, 2004, 432, 846-854.	13.7	433
152	The biological magic behind the bullets. Nature Biotechnology, 2004, 22, 37-38.	9.4	17
153	Indoprofen Upregulates the Survival Motor Neuron Protein through a Cyclooxygenase-Independent Mechanism. Chemistry and Biology, 2004, 11, 1489-1493.	6.2	135
154	A Flexible Data Analysis Tool for Chemical Genetic Screens. Chemistry and Biology, 2004, 11, 1495-1503.	6.2	29
155	Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3, 285-296.	7.7	973
156	Restoring functions of tumor suppressors with small molecules. Cancer Cell, 2003, 4, 419-420.	7.7	14
157	Biological Mechanism Profiling Using an Annotated Compound Library. Chemistry and Biology, 2003, 10, 881-892.	6.2	93
158	Systematic discovery of multicomponent therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7977-7982.	3.3	551
159	Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11394-11399.	3.3	466
160	Detecting Spatial Patterns in Biological Array Experiments. Journal of Biomolecular Screening, 2003, 8, 393-398.	2.6	24
161	Eliminating membrane depolarization caused by the Alzheimer peptide Aβ(1–42, aggr.). Biochemical and Biophysical Research Communications, 2002, 293, 1204-1208.	1.0	17
162	Chemical Genetic Screening Approaches to Neurobiology. Neuron, 2002, 36, 559-562.	3.8	31

#	Article	IF	CITATIONS
163	Global analysis of large-scale chemical and biological experiments. Current Opinion in Drug Discovery & Development, 2002, 5, 355-60.	1.9	4
164	Chemical genetics: ligand-based discovery of gene function. Nature Reviews Genetics, 2000, 1, 116-125.	7.7	399
165	Frontiers in chemical genetics. Trends in Biotechnology, 2000, 18, 449-455.	4.9	93
166	High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chemistry and Biology, 1999, 6, 71-83.	6.2	191
167	Synthesis and Preliminary Evaluation of a Library of Polycyclic Small Molecules for Use in Chemical Genetic Assays. Journal of the American Chemical Society, 1999, 121, 9073-9087.	6.6	155
168	Chemical Genetic and Genomic Approaches Reveal a Role for Copper in Specific Gene Activation. Journal of the American Chemical Society, 1999, 121, 10662-10663.	6.6	24
169	Probing the role of homomeric and heteromeric receptor interactions in TGF-β signaling using small molecule dimerizers. Current Biology, 1998, 8, 761-773.	1.8	54
170	TGF-β-signaling with small molecule FKBP12 antagonists that bind myristoylated FKBP12-TGF-β type I receptor fusion proteins. Chemistry and Biology, 1998, 5, 385-395.	6.2	33
171	An Induced Proximity Model for Caspase-8 Activation. Journal of Biological Chemistry, 1998, 273, 2926-2930.	1.6	879
172	Chemoenzymatic approaches to SCH 56592, a new azole antifungal. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1361-1370.	0.8	12