Chunyu Chang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4086527/chunyu-chang-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,316
papers

5,316
h-index

71
g-index

71
ext. papers

8.3
ext. citations

8.3
L-index

#	Paper	IF	Citations
68	Cellulose-based hydrogels: Present status and application prospects. <i>Carbohydrate Polymers</i> , 2011 , 84, 40-53	10.3	690
67	Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. <i>European Polymer Journal</i> , 2010 , 46, 92-100	5.2	556
66	Highly Efficient Self-Healable and Dual Responsive Cellulose-Based Hydrogels for Controlled Release and 3D Cell Culture. <i>Advanced Functional Materials</i> , 2017 , 27, 1703174	15.6	228
65	Superabsorbent Cellulosellay Nanocomposite Hydrogels for Highly Efficient Removal of Dye in Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 7217-7224	8.3	208
64	Swelling Behaviors of pH- and Salt-Responsive Cellulose-Based Hydrogels. <i>Macromolecules</i> , 2011 , 44, 1642-1648	5.5	196
63	Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. <i>Green Chemistry</i> , 2009 , 11, 177-184	10	193
62	Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. <i>Carbohydrate Polymers</i> , 2010 , 82, 122-127	10.3	191
61	Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. <i>Cellulose</i> , 2008 , 15, 779-787	5.5	172
60	Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3865		169
59	Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 1266-1273	2.6	163
58	Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. <i>Journal of Membrane Science</i> , 2017 , 525, 1-8	9.6	150
57	Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. <i>ChemPhysChem</i> , 2007 , 8, 1572-9	3.2	147
56	Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7771		140
55	Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. <i>Macromolecular Bioscience</i> , 2007 , 7, 804-9	5.5	140
54	Fabrication and characterization of novel macroporous cellulosellginate hydrogels. <i>Polymer</i> , 2009 , 50, 5467-5473	3.9	132
53	Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. <i>Carbohydrate Polymers</i> , 2016 , 137, 59-64	10.3	129
52	High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. Journal of Materials Chemistry A, 2013, 1, 1867-1874	13	125

(2017-2013)

51	Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. <i>Carbohydrate Polymers</i> , 2013 , 91, 7-13	10.3	101	
50	Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. <i>ACS Nano</i> , 2019 , 13, 4843-4853	16.7	97	
49	Robust Anisotropic Cellulose Hydrogels Fabricated via Strong Self-aggregation Forces for Cardiomyocytes Unidirectional Growth. <i>Chemistry of Materials</i> , 2018 , 30, 5175-5183	9.6	94	
48	Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability. <i>ACS Applied Materials &</i> Interfaces, 2017 , 9, 24230-24237	9.5	90	
47	Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. <i>Chemical Engineering Journal</i> , 2011 , 173, 689-697	14.7	88	
46	Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing. <i>Cellulose</i> , 2016 , 23, 749-763	5.5	69	
45	Deformation Drives Alignment of Nanofibers in Framework for Inducing Anisotropic Cellulose Hydrogels with High Toughness. <i>ACS Applied Materials & Description of Materials & Descripti</i>	9.5	65	
44	Construction of Transparent Cellulose-Based Nanocomposite Papers and Potential Application in Flexible Solar Cells. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8040-8047	8.3	64	
43	UV-induced self-cleanable TiO/nanocellulose membrane for selective separation of oil/water emulsion. <i>Carbohydrate Polymers</i> , 2018 , 201, 464-470	10.3	64	
42	Primarily Industrialized Trial of Novel Fibers Spun from Cellulose Dope in NaOH/Urea Aqueous Solution. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 11380-11384	3.9	57	
41	Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes. <i>Carbohydrate Polymers</i> , 2018 , 188, 143-150	10.3	56	
40	High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. <i>Biomacromolecules</i> , 2019 , 20, 1989-1995	6.9	55	
39	Robust Tunicate Cellulose Nanocrystal/Palygorskite Nanorod Membranes for Multifunctional Oil/Water Emulsion Separation. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 10833-10840	8.3	49	
38	Tunicate cellulose nanocrystals modified commercial filter paper for efficient oil/water separation. Journal of Membrane Science, 2019 , 591, 117362	9.6	48	
37	Recent developments and prospective food-related applications of cellulose nanocrystals: a review. <i>Cellulose</i> , 2020 , 27, 2991-3011	5.5	48	
36	Structure and properties of hydroxyapatite/cellulose nanocomposite films. <i>Carbohydrate Polymers</i> , 2012 , 87, 2512-2518	10.3	47	
35	Controlled Arrangement of Nanocellulose in Polymeric Matrix: From Reinforcement to Functionality. <i>ACS Nano</i> , 2020 ,	16.7	46	
34	Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. <i>Carbohydrate Polymers</i> , 2017 , 169, 139-148	10.3	43	

33	Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. <i>Nano Research</i> , 2016 , 9, 214-223	10	42
32	Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by IPN strategy. <i>Polymers for Advanced Technologies</i> , 2011 , 22, 1329-1334	3.2	35
31	Effects of Freezing/Thawing Cycles and Cellulose Nanowhiskers on Structure and Properties of Biocompatible Starch/PVA Sponges. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 137-145	3.9	34
30	Ultrahigh strength nanocomposite hydrogels designed by locking oriented tunicate cellulose nanocrystals in polymeric networks. <i>Composites Part B: Engineering</i> , 2020 , 197, 108118	10	33
29	Additive Printed All-Cellulose Membranes with Hierarchical Structure for Highly Efficient Separation of Oil/Water Nanoemulsions. <i>ACS Applied Materials & Discourse (Nature of Control of C</i>	9.5	28
28	Biocompatible cellulose-based supramolecular nanoparticles driven by host-guest interactions for drug delivery. <i>Carbohydrate Polymers</i> , 2020 , 237, 116114	10.3	22
27	Bioinspired Shape Memory Hydrogel Artificial Muscles Driven by Solvents. ACS Nano, 2021,	16.7	20
26	Phase transition identification of cellulose nanocrystal suspensions derived from various raw materials. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 45702	2.9	18
25	A simple strategy to design 3-layered Au-TiO dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. <i>Carbohydrate Polymers</i> , 2020 , 231, 115694	10.3	18
24	Construction of FFeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties. <i>Carbohydrate Polymers</i> , 2020 , 229, 115470	10.3	17
23	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. <i>Carbohydrate Polymers</i> , 2021 , 256, 117574	10.3	16
22	Fluorescent probe with aggregation-induced emission characteristics for targeted labelling and imaging of cancer cells. <i>RSC Advances</i> , 2017 , 7, 11282-11285	3.7	14
21	X-ray shielding structural and properties design for the porous transparent BaSO/cellulose nanocomposite membranes. <i>International Journal of Biological Macromolecules</i> , 2019 , 139, 793-800	7.9	14
20	Direct current electric field induced gradient hydrogel actuators with rapid thermo-responsive performance as soft manipulators. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2756-2763	7.1	13
19	Tunicate cellulose nanocrystal reinforced polyacrylamide hydrogels with tunable mechanical performance. <i>Cellulose</i> , 2018 , 25, 6561-6570	5.5	13
18	Structure and properties of films fabricated from chitin solution by coagulating with heating. Journal of Applied Polymer Science, 2014, 131, n/a-n/a	2.9	11
17	The conversion of nanocellulose into solvent-free nanoscale liquid crystals by attaching long side-arms for multi-responsive optical materials. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11022-11031	7.1	9
16	Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. <i>Journal of Membrane Science</i> , 2021 , 635, 119537	9.6	9

LIST OF PUBLICATIONS

15	Synthesis of O-(2,3-dihydroxypropyl) cellulose in NaOH/urea aqueous solution: As a precursor for introducing Elecklace-likestructure. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 3590-3597	2.5	6
14	Shear-aligned tunicate-cellulose-nanocrystal-reinforced hydrogels with mechano-thermo-chromic properties. <i>Journal of Materials Chemistry C</i> ,	7.1	6
13	High performance films of cellulose butyral derivative having a necklace-like annular structure in the side chains. <i>Polymer</i> , 2014 , 55, 3944-3950	3.9	5
12	Antibacterial nanocellulose membranes coated with silver nanoparticles for oil/water emulsions separation <i>Carbohydrate Polymers</i> , 2022 , 278, 118929	10.3	5
11	Additive printing of recyclable anti-counterfeiting patterns with sol-gel cellulose nanocrystal inks. <i>Nanoscale</i> , 2021 , 13, 11808-11816	7.7	5
10	Progress in tunicate cellulose based advanced functional materials. <i>Scientia Sinica Chimica</i> , 2016 , 46, 438-451	1.6	3
9	Magnetic field assisted fabrication of asymmetric hydrogels for complex shape deformable actuators. <i>Journal of Materials Chemistry C</i> ,	7.1	2
8	Bioinspired gradient hydrogel actuators with rewritable patterns and programmable shape deformation. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 10295-10302	7.1	2
7	The digital printing of chromatic pattern with a single cellulose nanocrystal ink. <i>Chemical Engineering Journal</i> , 2022 , 439, 135670	14.7	2
6	Surface engineering of cellulose film with myristic acid for high strength, self-cleaning and biodegradable packaging materials. <i>Carbohydrate Polymers</i> , 2021 , 269, 118315	10.3	1
5	Coagulation/anticoagulation-regulable and tough extracellular matrix hydrogels. <i>Composites Part B: Engineering</i> , 2022 , 109938	10	1
4	Self-healable hydrophobic films fabricated by incorporating natural wax into cellulose matrix. <i>Chemical Engineering Journal</i> , 2022 , 446, 136791	14.7	1
3	Structure and Properties of Cellulose Nanocrystals 2019 , 21-52		O
2	Top-down fabrication of biodegradable multilayer tunicate cellulose films with controlled mechanical properties. <i>Cellulose</i> , 2021 , 28, 10415	5.5	O
1	Tough all-polysaccharide hydrogels with uniaxially/planarly oriented structure <i>Carbohydrate Polymers</i> , 2022 , 288, 119376	10.3	О