
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4086390/publications.pdf Version: 2024-02-01

HILL-MIN WEN

#	Article	IF	CITATIONS
1	Hollow FeNi/NiFe ₂ O ₄ -Codoped Carbon Composite Nanorods for Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2022, 5, 3406-3414.	5.0	19
2	Metal Nanocluster—Metal Organic Framework—Polymer Hybrid Nanomaterials for Improved Hydrogen Detection. Small, 2022, 18, e2200634.	10.0	19
3	NiCo@NPC@CF nanocomposites derived from NiCo-MOF/cotton for high-performance electromagnetic wave absorption. Journal of Materials Chemistry C, 2022, 10, 8310-8320.	5.5	16
4	Hydrogen Bubble-Directed Tubular Structure: A Novel Mechanism to Facilely Synthesize Nanotube Arrays with Controllable Wall Thickness. ACS Applied Materials & Interfaces, 2021, 13, 5418-5424.	8.0	6
5	A novel anion-pillared metal–organic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 9248-9255.	10.3	55
6	Chemically Stable Hafnium-Based Metal–Organic Framework for Highly Efficient C ₂ H ₆ /C ₂ H ₄ Separation under Humid Conditions. ACS Applied Materials & Interfaces, 2021, 13, 18792-18799.	8.0	34
7	Compact Magnetoâ€Fluorescent Colloids by Hierarchical Assembly of Dualâ€Components in Radial Channels for Sensitive Pointâ€ofâ€Care Immunoassay. Small, 2021, 17, e2100862.	10.0	34
8	A Microporous Titanateâ€Based Metalâ€Organic Framework for Efficient Separation of Acetylene from Carbon Dioxide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1250-1253.	1.2	12
9	Dense Packing of Acetylene in a Stable and Low ost Metal–Organic Framework for Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 25068-25074.	13.8	116
10	Bimetal–organic frameworks derived tuneable Co nanoparticles embedded in porous nitrogen-doped carbon nanorods as high-performance electromagnetic wave absorption materials. Journal of Materials Chemistry C, 2021, 9, 7302-7309.	5.5	12
11	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2020, 142, 633-640.	13.7	183
12	A novel expanded metal–organic framework for balancing volumetric and gravimetric methane storage working capacities. Chemical Communications, 2020, 56, 13117-13120.	4.1	9
13	An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta, 2020, 220, 121377.	5.5	49
14	Hierarchical Plasmonic-Fluorescent Labels for Highly Sensitive Lateral Flow Immunoassay with Flexible Dual-Modal Switching. ACS Applied Materials & Interfaces, 2020, 12, 58149-58160.	8.0	44
15	A Chemically Stable Hofmannâ€Type Metalâ^'Organic Framework with Sandwichâ€Like Binding Sites for Benchmark Acetylene Capture. Advanced Materials, 2020, 32, e1908275.	21.0	236
16	Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations. Topics in Current Chemistry, 2019, 377, 33.	5.8	31
17	Reversing C ₂ H ₂ –CO ₂ adsorption selectivity in an ultramicroporous metal–organic framework platform. Chemical Communications, 2019, 55, 11354-11357.	4.1	46
18	A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 3128-3134.	10.3	124

#	Article	IF	CITATIONS
19	Ratiometric fluorometric and visual determination of cyanide based on the use of carbon dots and gold nanoclusters. Mikrochimica Acta, 2019, 186, 809.	5.0	20
20	Simultaneous Enhancement of Near-Infrared Emission and Dye Photodegradation in a Racemic Aspartic Acid Compound via Metal-Ion Modification. ACS Omega, 2019, 4, 19136-19144.	3.5	0
21	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	21.0	109
22	Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 6931-6937.	10.3	74
23	A Metal–Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie - International Edition, 2018, 57, 15183-15188.	13.8	124
24	A Metal–Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie, 2018, 130, 15403-15408.	2.0	98
25	One-pot synthesis of highly luminescent <i>N</i> -acetyl- <scp>I</scp> -cysteine-capped CdTe quantum dots and their size effect on the detection of glutathione. New Journal of Chemistry, 2018, 42, 15743-15749.	2.8	10
26	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2172-2177.	3.0	26
27	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	21.0	310
28	Syntheses, characterization and electrochemical and spectroscopic properties of ruthenium–iron complexes of 2,3,5,6-tetrakis(2-pyridyl)pyrazine and ferrocene-acetylide ligands. Dalton Transactions, 2016, 45, 10620-10629.	3.3	12
29	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	3.0	36
30	A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High C ₂ H ₂ Storage and Significantly Enhanced C ₂ H ₂ /CO ₂ Separation at Ambient Conditions. Inorganic Chemistry, 2016, 55, 7214-7218.	4.0	124
31	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	21.0	1,227
32	Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. CheM, 2016, 1, 557-580.	11.7	297
33	Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted–MCBJ. Nano Research, 2016, 9, 560-570.	10.4	32
34	Solution-processed OLEDs based on phosphorescent PtAu ₂ complexes with phenothiazine-functionalized acetylides. Journal of Materials Chemistry C, 2016, 4, 6096-6103.	5.5	39
35	High acetylene/ethylene separation in a microporous zinc(<scp>ii</scp>) metal–organic framework with low binding energy. Chemical Communications, 2016, 52, 1166-1169.	4.1	67
36	A microporous metal–organic framework with rare lvt topology for highly selective C ₂ H ₂ /C ₂ H ₄ separation at room temperature. Chemical Communications, 2015, 51, 5610-5613.	4.1	61

#	Article	IF	CITATIONS
37	Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy and Environmental Science, 2015, 8, 2504-2511.	30.8	126
38	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	24.7	176
39	Multistate and Multicolor Photochromism through Selective Cycloreversion in Asymmetric Platinum(II) Complexes with Two Different Dithienylethene–Acetylides. Inorganic Chemistry, 2015, 54, 11511-11519.	4.0	24
40	Hydrogen photogeneration catalyzed by a cobalt complex of a pentadentate aminopyridine-based ligand. New Journal of Chemistry, 2015, 39, 1734-1741.	2.8	16
41	Photocatalytic hydrogen evolution by two comparable [FeFe]â€hydrogenase mimics assembled to the surface of ZnS. Applied Organometallic Chemistry, 2014, 28, 267-273.	3.5	25
42	Heptacarbonylbis(μ-propane-1,3-dithiolato)triiron(I,II)(2 <i>Fe</i> — <i>Fe</i>). Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m124-m124.	0.2	2
43	Pyridyl- and pyrimidyl-phosphine-substituted [FeFe]-hydrogenase mimics: Synthesis, charaterization and properties. Journal of Organometallic Chemistry, 2014, 767, 46-53.	1.8	19
44	Efficient photocatalytic hydrogen evolution with end-group-functionalized cobaloxime catalysts in combination with graphite-like C ₃ N ₄ . RSC Advances, 2014, 4, 18853-18861.	3.6	42
45	Electro- and photocatalytic hydrogen evolution by a cobalt complex based on a tripodal iminopyridine ligand. Polyhedron, 2014, 81, 639-645.	2.2	7
46	A porous metal–organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. Journal of Materials Chemistry A, 2014, 2, 11516.	10.3	40
47	Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why?. Journal of Physical Chemistry Letters, 2014, 5, 3468-3479.	4.6	505
48	A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 2014, 136, 6207-6210.	13.7	311
49	Electrochemical, Spectroscopic, and Theoretical Studies on Diethynyl Ligand Bridged Ruthenium Complexes with 1,3-Bis(2-pyridylimino)isoindolate. Organometallics, 2014, 33, 4738-4746.	2.3	36
50	Modulating Stepwise Photochromism in Platinum(II) Complexes with Dual Dithienylethene–Acetylides by a Progressive Red Shift of Ring-Closure Absorption. Inorganic Chemistry, 2013, 52, 12511-12520.	4.0	24
51	Multistate Photochromism in a Ruthenium Complex with Dithienylethene–Acetylide. Organometallics, 2013, 32, 1759-1765.	2.3	20
52	Efficient photo-driven hydrogen evolution by binuclear nickel catalysts of different coordination in noble-metal-free systems. Dalton Transactions, 2013, 42, 8684.	3.3	40
53	Electrical conductance study on 1,3-butadiyne-linked dinuclear ruthenium(ii) complexes within single molecule break junctions. Chemical Science, 2013, 4, 2471.	7.4	81
54	Redox-Modulated Stepwise Photochromism in a Ruthenium Complex with Dual Dithienylethene-Acetylides. Journal of the American Chemical Society, 2012, 134, 16059-16067.	13.7	85

#	Article	IF	CITATIONS
55	Gold(I)-Coordination Triggered Multistep and Multiple Photochromic Reactions in Multi-Dithienylethene (DTE) Systems. Inorganic Chemistry, 2012, 51, 1933-1942.	4.0	43
56	Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution. Dalton Transactions, 2012, 41, 13899.	3.3	41
57	Photoswitchable electrochemical behaviour of a [FeFe] hydrogenase model with a dithienylethene derivative. Dalton Transactions, 2012, 41, 11813.	3.3	6
58	Luminescent square-planar platinum(ii) complexes with tridentate 3-bis(2-pyridylimino)isoindoline and monodentate N-heterocyclic ligands. Dalton Transactions, 2011, 40, 6929.	3.3	21
59	Efficient Synthetic Approaches To Access Ruthenium(II) Complexes with 2-(Trimethylsilyl)ethyl- or Acetyl-Protected Terpyridine-Thiols. European Journal of Inorganic Chemistry, 2011, 2011, 1784-1791.	2.0	8
60	Synthesis, structures and electrochemistry studies of 2Fe2S–Fe(ii)(S–2N)2 models for H-cluster of [FeFe]-hydrogenase. Dalton Transactions, 2010, 39, 9484.	3.3	4
61	Spectroscopic and Luminescence Studies on Square-Planar Platinum(II) Complexes with Anionic Tridentate 3-Bis(2-pyridylimino)isoindoline Derivatives. Inorganic Chemistry, 2010, 49, 2210-2221.	4.0	59
62	Dense Packing of Acetylene in a Stable and Low ost Metal–Organic Framework for Efficient C2H2/CO2 Separation. Angewandte Chemie, 0, , .	2.0	14