Ilaria Cavarretta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4086366/publications.pdf

Version: 2024-02-01

377584 445137 34 1,832 21 33 h-index citations g-index papers 35 35 35 2722 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Endoplasmic reticulum oxidoreductase 1 alpha modulates prostate cancer hallmarks. Translational Andrology and Urology, 2021, 10, 1110-1120.	0.6	5
2	A mechanistic insight into the anti-metastatic role of the prostate specific antigen. Translational Oncology, 2021, 14, 101211.	1.7	7
3	Development of the First Model of Radical Prostatectomy in the Mouse: A Feasibility Study. European Urology, 2018, 73, 482-484.	0.9	3
4	Analysis of the Enteric Microbiome: First Tentative Steps Towards a Comprehensive Work-up of Prostate Cancer?. European Urology, 2018, 74, 583-584.	0.9	4
5	The Microbiome of the Prostate Tumor Microenvironment. European Urology, 2017, 72, 625-631.	0.9	154
6	Primary, secondary and compensated hypogonadism: a novel risk stratification for infertile men. Andrology, 2017, 5, 505-510.	1.9	38
7	Human Prostate Tissue-derived Extracellular Matrix as a Model of Prostate Microenvironment. European Urology Focus, 2016, 2, 400-408.	1.6	8
8	Soluble gp130 Regulates Prostate Cancer Invasion and Progression in an Interleukin-6 Dependent and Independent Manner. Journal of Urology, 2011, 186, 2107-2114.	0.2	15
9	Inhibition of the Acetyltransferases p300 and CBP Reveals a Targetable Function for p300 in the Survival and Invasion Pathways of Prostate Cancer Cell Lines. Molecular Cancer Therapeutics, 2011, 10, 1644-1655.	1.9	188
10	Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocrine-Related Cancer, 2010, 17, 241-253.	1.6	102
11	Adipose Tissue–derived Mesenchymal Stem Cells Expressing Prodrug-converting Enzyme Inhibit Human Prostate Tumor Growth. Molecular Therapy, 2010, 18, 223-231.	3.7	177
12	Identification of µâ€crystallin as an androgenâ€regulated gene in human prostate cancer. Prostate, 2009, 69, 1109-1118.	1.2	19
13	Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocrine-Related Cancer, 2009, 16, 155-169.	1.6	141
14	Suppressor of cytokine signalling-3 is up-regulated by androgen in prostate cancer cell lines and inhibits androgen-mediated proliferation and secretion. Endocrine-Related Cancer, 2007, 14, 1007-1019.	1.6	45
15	Increased resistance to trail-induced apoptosis in prostate cancer cells selected in the presence of bicalutamide. Prostate, 2007, 67, 1194-1201.	1.2	8
16	Suppressor of Cytokine Signaling-3 Antagonizes cAMP Effects on Proliferation and Apoptosis and Is Expressed in Human Prostate Cancer. American Journal of Pathology, 2006, 169, 2199-2208.	1.9	57
17	Regulation of growth of prostate cancer cells selected in the presence of interleukin-6 by the anti-interleukin-6 antibody CNTO 328. Prostate, 2006, 66, 1744-1752.	1.2	38
18	Neuroactive steroids influence peripheral myelination: a promising opportunity for preventing or treating age-dependent dysfunctions of peripheral nerves. Progress in Neurobiology, 2003, 71, 57-66.	2.8	70

#	Article	IF	Citations
19	Effects of neuroactive steroids on myelin of peripheral nervous system. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 323-327.	1.2	31
20	Interactions between growth factors and steroids in the control of LHRH-secreting neurons. Brain Research Reviews, 2001, 37, 223-234.	9.1	24
21	Neuroactive steroids and peripheral myelin proteins. Brain Research Reviews, 2001, 37, 360-371.	9.1	104
22	Corticosteroids Regulate the Gene Expression of FGF-1 and FGF-2 in Cultured Rat Astrocytes. Journal of Molecular Neuroscience, 2000, 15, 11-18.	1.1	18
23	Testosterone metabolites in patients reduce the levels of very long chain fatty acids accumulated in X-adrenoleukodystrophic fibroblasts. Neuroscience Letters, 2000, 289, 139-142.	1.0	8
24	Progesterone derivatives are able to influence peripheral myelin protein 22 and PO gene expression: Possible mechanisms of action. Journal of Neuroscience Research, 1999, 56, 349-357.	1.3	117
25	Interactions between type 1 astrocytes and LHRH-secreting neurons (GT1-1 cells): modification of steroid metabolism and possible role of TGF \hat{I}^21 . Journal of Steroid Biochemistry and Molecular Biology, 1999, 71, 41-47.	1.2	15
26	Po gene expression is modulated by androgens in the sciatic nerve of adult male rats. Molecular Brain Research, 1999, 70, 36-44.	2.5	71
27	Progesterone derivatives are able to influence peripheral myelin protein 22 and PO gene expression: Possible mechanisms of action., 1999, 56, 349.		1
28	Progesterone derivatives are able to influence peripheral myelin protein 22 and PO gene expression: Possible mechanisms of action., 1999, 56, 349.		5
29	Crosstalk Between Normal and Tumoral Brain Cells: Effect on Sex Steroid Metabolism. Endocrine, 1998, 8, 65-72.	2.2	21
30	Effects of steroid hormones on gene expression of glial markers in the central and peripheral nervous system: variations induced by aging. Experimental Gerontology, 1998, 33, 827-836.	1.2	36
31	Age-induced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neuroscience, 1998, 85, 569-578.	1.1	104
32	The 5î±-reductase in the central nervous system: expression and modes of control. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 295-299.	1.2	118
33	Astrocyte-Neuron Interactions in Vitro: Role of Growth Factors and Steroids on LHRH Dynamics. Brain Research Bulletin, 1997, 44, 465-469.	1.4	24
34	Transforming growth factor-beta and astrocytic conditioned medium influence luteinizing hormone-releasing hormone gene expression in the hypothalamic cell line GT1 Endocrinology, 1996, 137, 5605-5609.	1.4	54