Sudarsanam Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4086349/publications.pdf

Version: 2024-02-01

275 papers 14,200 citations

19636 61 h-index 26591 107 g-index

286 all docs

286 docs citations

286 times ranked

8403 citing authors

#	Article	IF	Citations
1	The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 2016, 61, 315-360.	9.4	1,706
2	Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Materials Science and Technology, 2015, 31, 931-938.	0.8	424
3	Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Materialia, 2016, 112, 303-314.	3.8	385
4	Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Materialia, 2007, 55, 381-390.	3.8	307
5	The mechanism of acicular ferrite in weld deposits. Current Opinion in Solid State and Materials Science, 2004, 8, 267-278.	5. 6	264
6	In situ observations of lattice expansion and transformation rates of α and β phases in Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 391, 104-113.	2.6	221
7	Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1419-1432.	1.1	220
8	Phase transformation dynamics during welding of Ti–6Al–4V. Journal of Applied Physics, 2004, 95, 8327-8339.	1.1	214
9	In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3281-3289.	1.1	207
10	Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4470-4483.	1.1	191
11	Welding: Solidification and microstructure. Jom, 2003, 55, 14-20.	0.9	181
12	Application of high velocity impact welding at varied different length scales. Journal of Materials Processing Technology, 2011, 211, 944-952.	3.1	176
13	Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting. Journal of Materials Research, 2014, 29, 1920-1930.	1.2	170
14	Building digital twins of 3D printing machines. Scripta Materialia, 2017, 135, 119-124.	2.6	170
15	Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing. Acta Materialia, 2017, 140, 375-387.	3.8	160
16	Fusion and friction stir welding of aluminum-metal-matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3237-3247.	1.1	156
17	Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challengesâ [†] t. Current Opinion in Solid State and Materials Science, 2017, 21, 207-218.	5. 6	153
18	Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Materialia, 2010, 58, 4305-4315.	3.8	147

#	Article	IF	CITATIONS
19	Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scripta Materialia, 2004, 51, 327-331.	2.6	146
20	Characterization of the microstructure evolution in a nickel base superalloy during continuous cooling conditions. Acta Materialia, 2001, 49, 4149-4160.	3.8	135
21	Evaluation of an Al-Ce alloy for laser additive manufacturing. Acta Materialia, 2017, 126, 507-519.	3.8	133
22	Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3764-3780.	1.1	129
23	Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints. Materials & Design, 2014, 55, 263-273.	5.1	127
24	Time-resolved X-ray diffraction investigation of primary weld solidification in Fe-C-Al-Mn steel welds. Acta Materialia, 2002, 50, 4763-4781.	3.8	125
25	Redistribution of alloying elements during tempering of a nanocrystalline steel. Acta Materialia, 2008, 56, 188-199.	3.8	120
26	Computational modeling of residual stress formation during the electron beam melting process for Inconel 718. Additive Manufacturing, 2015, 7, 83-91.	1.7	119
27	Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scripta Materialia, 2010, 62, 560-563.	2.6	115
28	Empirical model of effects of pressure and temperature on electrical contact resistance of metals. Science and Technology of Welding and Joining, 2001, 6, 126-132.	1.5	113
29	Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1520-1529.	1.0	111
30	Mechanism of weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061. Acta Materialia, 2014, 74, 234-243.	3.8	110
31	Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 754-762.	1.0	108
32	Three-dimensional atom probe analysis of carbon distribution in low-temperature bainite. Scripta Materialia, 2004, 50, 1277-1281.	2.6	107
33	Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing. Scientific Reports, 2017, 7, 43554.	1.6	105
34	Development of macro- and microstructures of carbon–manganese low alloy steel welds: inclusion formation. Materials Science and Technology, 1995, 11, 186-199.	0.8	104
35	Metallic materials for 3D printing. MRS Bulletin, 2016, 41, 729-741.	1.7	99
36	Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties. Jom, 2016, 68, 1012-1020.	0.9	98

#	Article	IF	Citations
37	Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing. Acta Materialia, 2016, 117, 228-237.	3.8	98
38	Atom probe study of the precipitation process in Alî—,Cuî—,Mgî—,Ag alloys. Acta Metallurgica Et Materialia, 1993, 41, 829-838.	1.9	97
39	Effect of grain size refinement and precipitation reactions on strengthening in friction stir processed Al–Cu alloys. Scripta Materialia, 2011, 65, 1057-1060.	2.6	95
40	Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. International Materials Reviews, 2022, 67, 298-345.	9.4	95
41	Development of rapid heating and cooling (flash processing) process to produce advanced high strength steel microstructures. Materials Science and Technology, 2011, 27, 863-875.	0.8	92
42	Additive manufacturing of materials: Opportunities and challenges. MRS Bulletin, 2015, 40, 1154-1161.	1.7	91
43	Synchrotron X-ray studies of austenite and bainitic ferrite. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 1009-1027.	1.0	86
44	Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 499-508.	1.1	85
45	Welding of nickel base superalloy single crystals. Science and Technology of Welding and Joining, 1997, 2, 79-88.	1.5	85
46	Additive manufacturing of complex-shaped graded TiC/steel composites. Materials and Design, 2017, 118, 198-203.	3.3	84
47	Quantitative Evaluation of Bulk and Interface Microstructures in Al-3003 Alloy Builds Made by Very High Power Ultrasonic Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 4045-4055.	1.1	81
48	Thermal transients during processing of materials by very high power ultrasonic additive manufacturing. Journal of Materials Processing Technology, 2011, 211, 1650-1657.	3.1	81
49	Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing. Scripta Materialia, 2016, 117, 1-5.	2.6	81
50	Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing. Additive Manufacturing, 2017, 18, 256-268.	1.7	81
51	Joining of nickel base superalloy single crystals. Science and Technology of Welding and Joining, 2004, 9, 1-12.	1.5	78
52	Mechanism of the Transition from Bainite to Acicular Ferrite. Materials Transactions, JIM, 1991, 32, 679-688.	0.9	77
53	Structure–mechanical property relationship in fused deposition modelling. Materials Science and Technology, 2015, 31, 895-903.	0.8	74
54	Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. Journal of Power Sources, 2018, 396, 590-598.	4.0	74

#	Article	IF	Citations
55	Stray grain formation in single crystal Ni-base superalloy welds. Journal of Applied Physics, 2003, 94, 4203-4209.	1.1	72
56	Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits. Materials Science and Technology, 1990, 6, 1005-1020.	0.8	71
57	Neutron depth profiling technique for studying aging in Li-ion batteries. Electrochimica Acta, 2011, 56, 4735-4743.	2.6	71
58	Observations of ferrite/austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds using time resolved X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 307-321.	2.6	70
59	Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Applied Energy, 2018, 215, 202-210.	5.1	69
60	Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells. International Journal of Hydrogen Energy, 2017, 42, 14734-14740.	3.8	67
61	Design and Tailoring of Alloys for Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6000-6019.	1.1	67
62	Stress and the acicular ferrite transformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 156, 1-9.	2.6	65
63	Effect of 30T magnetic field on transformations in a novel bainitic steel. Scripta Materialia, 2005, 52, 461-466.	2.6	64
64	Friction Skew-stir welding of lap joints in 5083–0 aluminium. Science and Technology of Welding and Joining, 2005, 10, 268-280.	1.5	62
65	Diffusion of carbon in substitutionally alloyed austenite. Journal of Materials Science Letters, 1995, 14, 314-316.	0.5	61
66	Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 606-616.	2.6	61
67	Interfacial ultrafine-grained structures on aluminum alloy 6061 joint and copper alloy 110 joint fabricated by magnetic pulse welding. Journal of Materials Science, 2010, 45, 4645-4651.	1.7	59
68	Characterization of microstructural strengthening in the heat-affected zone of a blast-resistant naval steel. Acta Materialia, 2010, 58, 5596-5609.	3.8	59
69	Ultrasonic additive manufacturing of steel: Method, post-processing treatments and properties. Journal of Materials Processing Technology, 2018, 256, 183-189.	3.1	58
70	Inclusion Formation and Microstructure Evolution in Low Alloy Steel Welds ISIJ International, 2002, 42, 1344-1353.	0.6	57
71	Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses. Computational Materials Science, 2013, 69, 251-260.	1.4	56
72	Influence of hot isostatic pressing on the performance of aluminum alloy fabricated by ultrasonic additive manufacturing. Scripta Materialia, 2018, 145, 33-36.	2.6	56

#	Article	IF	CITATIONS
73	Thermal diffusivity study of aged Li-ion batteries using flash method. Journal of Power Sources, 2010, 195, 872-876.	4.0	55
74	Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V. Jom, 2016, 68, 772-777.	0.9	55
75	Toward prediction of microstructural evolution during laser surface alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1189-1200.	1.1	54
76	Microstructural and micromechanical characterization of IN718 theta shaped specimens built with electron beam melting. Acta Materialia, 2016, 108, 161-175.	3.8	54
77	Characterisation of Al–Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 2016, 21, 114-123.	1.5	54
78	Direct Observation that Bainite can Grow Below MS. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4984-4988.	1.1	53
79	Microstructure evolution during tensile deformation of a nanostructured bainitic steel. Scripta Materialia, 2013, 69, 777-780.	2.6	53
80	Effect of microstructure and defects on fatigue behaviour of directed energy deposited Ti–6Al–4V. Science and Technology of Welding and Joining, 2015, 20, 659-669.	1.5	53
81	Stray grain formation, thermomechanical stress and solidification cracking in single crystal nickel base superalloy welds. Science and Technology of Welding and Joining, 2004, 9, 472-482.	1.5	52
82	Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation. Materials and Design, 2018, 140, 95-105.	3.3	51
83	APFIM studies on martensite tempering of Fe-C-Si-Mn low alloy steel. Applied Surface Science, 1993, 67, 321-327.	3.1	50
84	Multi-Scale Characterization Studies of Aged Li-Ion Large Format Cells for Improved Performance: An Overview. Journal of the Electrochemical Society, 2013, 160, A2111-A2154.	1.3	50
85	Atom probe study of early stage phase decomposition in an Al-7.8 at.% Li alloy. Acta Metallurgica Et Materialia, 1992, 40, 3027-3034.	1.9	48
86	Microstructural effects on the springback of advanced high-strength steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 3221-3231.	1.1	48
87	Intragranular precipitation in alloy 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 270, 14-18.	2.6	47
88	Comparison of the phase compositions in Alloy 718 measured by atom probe tomography and predicted by thermodynamic calculations. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2002, 327, 84-88.	2.6	47
89	Thermodynamic and kinetic models for describing microstructure evolution during joining of metals and alloys. International Materials Reviews, 2009, 54, 333-367.	9.4	47
90	On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 18-27.	2.6	47

#	Article	IF	CITATIONS
91	Using Tournaments to Reduce Agency Problems: The Case of Franchising. Entrepreneurship Theory and Practice, 2011, 35, 427-447.	7.1	46
92	Correlation of precipitate stability to increased creep resistance of Cr–Mo steel welds. Acta Materialia, 2013, 61, 2194-2206.	3.8	46
93	Asymmetric Cracking in Mar-M247 Alloy Builds During Electron Beam Powder Bed Fusion Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5065-5079.	1.1	45
94	Microstructure and properties of additively manufactured Al–Ce–Mg alloys. Scientific Reports, 2021, 11, 6953.	1.6	44
95	Process-Defect-Structure-Property Correlations During Laser Powder Bed Fusion of Alloy 718: Role of In Situ and Ex Situ Characterizations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5775-5798.	1.1	43
96	Atom probe compositional analysis of Coâ€Cr sputtered magnetic thin films. Applied Physics Letters, 1993, 62, 2504-2506.	1.5	42
97	Processing of Fe3Al and FeAl alloys by reaction synthesis. Intermetallics, 1995, 3, 467-481.	1.8	42
98	Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 208-229.	1.1	42
99	Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing. Additive Manufacturing, 2017, 13, 156-165.	1.7	42
100	Role of scan strategies on thermal gradient and solidification rate in electron beam powder bed fusion. Additive Manufacturing, 2018, 22, 516-527.	1.7	42
101	In situobservations of weld pool solidification using transparent metal-analog systems. Journal of Applied Physics, 2003, 93, 4885-4895.	1.1	40
102	Low temperature relaxation of residual stress in Ti–6Al–4V. Scripta Materialia, 2005, 52, 1051-1056.	2.6	40
103	In situ observations of non–equilibrium austenite formation during weld solidification of an Fe–C–Al–Mn low–alloy steel. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 811-821.	1.0	39
104	Microstructure characterisation of magnetic pulse welded AA6061-T6 by electron backscattered diffraction. Science and Technology of Welding and Joining, 2008, 13, 467-471.	1.5	39
105	Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy. Journal of Power Sources, 2011, 196, 1508-1512.	4.0	39
106	Modeling of inclusion growth and dissolution in the weld pool. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 161-169.	1.0	38
107	Geometry-Induced Spatial Variation of Microstructure Evolution During Selective Electron Beam Melting of Rene-N5. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5080-5096.	1.1	38
108	Calculation of inclusion formation in low-alloy-steel welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 215, 84-91.	2.6	37

#	Article	IF	Citations
109	Atom probe field ion microscopy investigation of boron containing martensitic 9 Pct chromium steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 975-984.	1.1	37
110	Scanning spreading resistance characterization of aged Li-ion batteries using atomic force microscopy. Scripta Materialia, 2009, 60, 933-936.	2.6	36
111	Effect of magnetic stirring on grain structure refinement Part 2 – Nickel alloy weld overlays. Science and Technology of Welding and Joining, 2010, 15, 400-406.	1.5	34
112	Additive manufacturing. Materials Science and Technology, 2015, 31, 881-883.	0.8	34
113	Ultrasonic additive manufacturing of 4130 steel using Ni interlayers. Science and Technology of Welding and Joining, 2019, 24, 382-390.	1.5	33
114	Reactive gas shielding during laser surface alloying for production of hard coatings. Surface and Coatings Technology, 2006, 200, 2663-2671.	2.2	32
115	Effect of magnetic stirring on grain structure refinement: Part 1 \hat{a} \in "Autogenous nickel alloy welds. Science and Technology of Welding and Joining, 2010, 15, 583-589.	1.5	32
116	Transient thermal response in ultrasonic additive manufacturing of aluminum 3003. Rapid Prototyping Journal, 2011, 17, 369-379.	1.6	32
117	Optimizing Ultrasonic Additive Manufactured Al 3003 Properties With Statistical Modeling. Journal of Engineering Materials and Technology, Transactions of the ASME, 2012, 134, .	0.8	32
118	Elastic constants of Ultrasonic Additive Manufactured Al 3003-H18. Ultrasonics, 2013, 53, 211-218.	2.1	32
119	Integrated computational model to predict mechanical behaviour of spot weld. Science and Technology of Welding and Joining, 2008, 13, 232-239.	1.5	31
120	Optical properties and CCN activity of aerosols in a highâ€altitude Himalayan environment: Results from RAWEXâ€GVAX. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2453-2469.	1.2	31
121	Phase Field Simulations of Autocatalytic Formation of Alpha Lamellar Colonies in Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6577-6592.	1.1	31
122	Multimodal $\hat{I}^3 \hat{a} \in \mathbb{Z}^2$ precipitation in Inconel-738 Ni-based superalloy during electron-beam powder bed fusion additive manufacturing. Journal of Materials Science, 2020, 55, 13342-13350.	1.7	31
123	Evaluation of microstructure stability at the interfaces of Al-6061 welds fabricated using ultrasonic additive manufacturing. Materials Characterization, 2018, 139, 249-258.	1.9	30
124	Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture. Jom, 2017, 69, 485-490.	0.9	29
125	Effect of high energy density welding processes on inclusion and microstructure formation in steel welds. Science and Technology of Welding and Joining, 1999, 4, 63-73.	1.5	28
126	Characterization of Steel-Ta Dissimilar Metal Builds Made Using Very High Power Ultrasonic Additive Manufacturing (VHP-UAM). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2517-2528.	1.1	28

#	Article	IF	CITATIONS
127	Tempering of Low-Temperature Bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3410-3418.	1.1	28
128	Microstructure and mechanical property characterisation of aluminium–steel joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 2017, 22, 373-380.	1.5	28
129	Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion. Additive Manufacturing, 2018, 19, 184-196.	1.7	28
130	Post-processing to Modify the $\hat{l}\pm$ Phase Micro-Texture and \hat{l}^2 Phase Grain Morphology in Ti-6Al-4V Fabricated by Powder Bed Electron Beam Melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3429-3439.	1.1	28
131	A direct study of grain boundary allotriomorphic ferrite crystallography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 142, 209-219.	2.6	27
132	Colossal super saturation of oxygen at the iron-aluminum interfaces fabricated using solid state welding. Scripta Materialia, 2017, 130, 196-199.	2.6	27
133	Coarsening of oxide inclusions in low alloy steel welds. Science and Technology of Welding and Joining, 1996, 1, 17-27.	1.5	26
134	Discovery of lithium in copper current collectors used in batteries. Scripta Materialia, 2012, 67, 669-672.	2.6	26
135	Effect of preheat temperature and post-process treatment on the microstructure and mechanical properties of stainless steel 410 made via ultrasonic additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 769, 138457.	2.6	26
136	Model for inclusion formation in low alloy steel welds. Science and Technology of Welding and Joining, 1999, 4, 276-284.	1.5	25
137	Strength Recovery in a High-Strength Steel During Multiple Weld Thermal Simulations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3669-3679.	1.1	25
138	Thermal Transients During Processing of 3003 Al-H18 Multilayer Build by Very High-Power Ultrasonic Additive Manufacturing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 133-144.	1.0	25
139	Localized Changes of Stainless Steel Powder Characteristics During Selective Laser Melting Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1582-1605.	1.1	25
140	Phase transformation pathways in Ti-6Al-4V manufactured via electron beam powder bed fusion. Acta Materialia, 2021, 215, 117131.	3.8	25
141	Welding of Materials for Energy Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3385-3410.	1.1	24
142	Porosity and phase fraction evolution with aging in lithium iron phosphate battery cathodes. Journal of Power Sources, 2013, 243, 750-757.	4.0	23
143	Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C–Mn steels. Science and Technology of Welding and Joining, 2014, 19, 376-384.	1.5	23
144	Evolution of dislocation structure in the heat affected zone of a nickel-based single crystal. Journal of Applied Physics, 2004, 96, 3673-3679.	1.1	22

#	Article	IF	CITATIONS
145	In situ X-ray diffraction analysis of strain-induced transformations in Fe- and Co-base hardfacing alloys. Scripta Materialia, 2015, 98, 60-63.	2.6	22
146	Approach to qualification using E-PBF in-situ process monitoring in Ti-6Al-4V. Additive Manufacturing, 2019, 28, 98-106.	1.7	22
147	In-Situ Monitoring for Defect Identification in Nickel Alloy Complex Geometries Fabricated by L-PBF Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6528-6545.	1.1	22
148	Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits. Materials Science and Technology, 1990, 6, 1005-1020.	0.8	22
149	Delamination failures of Stellite hardfacing in power plants: a microstructural characterisation study. Science and Technology of Welding and Joining, 2014, 19, 476-486.	1.5	21
150	On the potential mechanisms of β to α′ + β decomposition in two phase titanium alloys during addition manufacturing: a combined transmission Kikuchi diffraction and 3D atom probe study. Journal of Materials Science, 2020, 55, 1715-1726.	ive 1.7	21
151	Sensitivity of Thermal Predictions to Uncertain Surface Tension Data in Laser Additive Manufacturing. Journal of Heat Transfer, 2020, 142, .	1.2	21
152	Compositional inhomogeneities in sputtered Coâ€Cr magnetic thin films studied by atom probe field ion microscopy. Journal of Applied Physics, 1994, 76, 8025-8031.	1.1	20
153	Phase stability and atom probe field ion microscopy of type 308 cre stainless steel weld metal. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 763-774.	1.1	20
154	Physical Simulation of Deformation and Microstructure Evolution During Friction Stir Processing of Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3577-3591.	1.1	20
155	Mechanical Characterization of an Additively Manufactured Inconel 718 Theta-Shaped Specimen. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 971-980.	1.1	20
156	Local electronic structure of LiFePO4 nanoparticles in aged Li-ion batteries. Acta Materialia, 2011, 59, 6917-6926.	3.8	19
157	Heterogeneous Creep Deformations and Correlation to Microstructures in Fe-30Cr-3Al Alloys Strengthened by an Fe2Nb Laves Phase. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4598-4614.	1.1	19
158	Rationalization of solidification mechanism of Nd–Fe–B magnets during laser directed-energy deposition. Journal of Materials Science, 2018, 53, 8619-8626.	1.7	19
159	Meta-equilibrium transition microstructure for maximum austenite stability and minimum hardness in a Ti-stabilized supermartensitic stainless steel. Materials and Design, 2018, 156, 609-621.	3.3	19
160	Crystallographic texture and the austenite grain structure of low-alloy steel weld deposits. Journal of Materials Science Letters, 1991, 10, 142-144.	0.5	18
161	New model for prediction of ferrite number of stainless steel welds. Science and Technology of Welding and Joining, 1997, 2, 279-285.	1.5	18
162	Stability of γ′ precipitates in a PWA1480 alloy. Intermetallics, 2007, 15, 757-766.	1.8	18

#	Article	IF	CITATIONS
163	Reducing hot cracking tendency of dissimilar weld overlay by magnetic arc oscillation. Materials Science and Technology, 2014, 30, 930-937.	0.8	18
164	Additive manufacturing technology., 2019,, 11-53.		18
165	Heterogeneous creep deformation in Dissimilar Metal Welds (DMWs). Materials Science & Discourse and Processing A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 1-13.	2.6	18
166	Qualification pathways for additively manufactured components for nuclear applications. Journal of Nuclear Materials, 2021, 548, 152846.	1.3	18
167	An Integrated Model to Simulate Laser Cladding Manufacturing Process for Engine Repair Applications. Welding in the World, Le Soudage Dans Le Monde, 2010, 54, R298-R307.	1.3	17
168	Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 4015-4031.	1.1	17
169	In pursuit of optimum welding system design for steels. Science and Technology of Welding and Joining, 2011, 16, 306-312.	1.5	17
170	Microstructure evolution during near-net-shape fabrication of NixAly-TiC cermets through binder jet additive manufacturing and pressureless melt infiltration. International Journal of Refractory Metals and Hard Materials, 2019, 84, 104985.	1.7	17
171	Investigating the effect of metal powder recycling in Electron beam Powder Bed Fusion using process log data. Additive Manufacturing, 2020, 32, 100994.	1.7	17
172	In-Situ Observations of Martensitic Transformation in Blast-Resistant Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1538-1546.	1.1	16
173	Development of a gall-resistant stainless-steel hardfacing alloy. Materials and Design, 2018, 143, 38-48.	3.3	16
174	Analysis of Stray Grain Formation in Single-Crystal Nickel-Based Superalloy Welds. , 2004, , .		16
175	Deformation in the heat affected zone during spot welding of a nickel-based single crystal. Journal of Applied Physics, 2003, 94, 738-742.	1.1	15
176	Investigation of heat affected zone softening in armour steels Part 1 $\hat{a} \in$ Phase transformation kinetics. Science and Technology of Welding and Joining, 2013, 18, 247-252.	1.5	15
177	<i>In situ</i> velocity measurements of very high power ultrasonic additive manufacturing using a photonic Doppler velocimeter. Science and Technology of Welding and Joining, 2014, 19, 157-163.	1.5	15
178	Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2188-2200.	1.1	15
179	Constitutive properties and plastic instabilities in the heat-affected zones of advanced high-strength steel spot welds. Journal of Materials Science, 2019, 54, 5825-5843.	1.7	15
180	Effect of weld power and interfacial temperature on mechanical strength and microstructure of carbon steel 4130 fabricated by ultrasonic additive manufacturing. Manufacturing Letters, 2020, 25, 64-69.	1.1	15

#	Article	IF	CITATIONS
181	Evaluation of Carbon Partitioning in New Generation of Quench and Partitioning (Q&P) Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4809-4823.	1.1	14
182	Atom probe analysis of a nanocrystalline Fe-C-Ta sputtered soft magnetic thin film. Applied Surface Science, 1993, 67, 391-397.	3.1	13
183	Investigation of Boron Distribution in Martensitic 9% Cr Creep Resistant Steel. ISIJ International, 2002, 42, S62-S66.	0.6	13
184	Multiscale characterisation of weldments. Science and Technology of Welding and Joining, 2011, 16, 3-11.	1.5	13
185	Experimental observations of wear in specimens tested to ASTM G98. Wear, 2014, 320, 111-119.	1.5	13
186	Effect of filler metal and post-weld friction stir processing on stress corrosion cracking susceptibility of Al–Zn–Mg arc welds. Science and Technology of Welding and Joining, 2015, 20, 460-467.	1.5	13
187	Fabrication of conductive paths on a fused deposition modeling substrate using inkjet deposition. Rapid Prototyping Journal, 2016, 22, 77-86.	1.6	13
188	Feasibility Study of Making Metallic Hybrid Materials Using Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5035-5041.	1,1	13
189	Atom-Probe Field-Ion Microscopy Investigation of CMSX-4 Ni-Base Superalloy Laser Beam Welds. European Physical Journal Special Topics, 1996, 06, C5-253-C5-258.	0.2	12
190	Effect of stress relief temperature and cooling rate on pressure vessel steel welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 327, 76-79.	2.6	12
191	Raman and NMR studies of aged LiFePO4 cathode. Applied Surface Science, 2012, 259, 49-54.	3.1	12
192	Validation of an alloy design strategy for stable Fe–Cr–Al–Nb-X ferritic alloys using electron microscopy and atom probe tomography. Materials Characterization, 2019, 158, 109987.	1.9	12
193	Toward online layer-wise surface morphology measurement in additive manufacturing using a deep learning-based approach. Journal of Intelligent Manufacturing, 2023, 34, 2673-2689.	4.4	12
194	Recent advances in modelling and characterisation of weld microstructures. Science and Technology of Welding and Joining, 2001, 6, 341-346.	1.5	11
195	Optimization of Weld Conditions and Alloy Composition for Welding of Single-Crystal Nickel-Based Superalloys. Materials Science Forum, 2007, 539-543, 3082-3087.	0.3	11
196	Interdiffusion of Elements During Ultrasonic Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1142-1157.	1.1	11
197	Influence of neutron irradiation on Al-6061 alloy produced via ultrasonic additive manufacturing. Journal of Nuclear Materials, 2021, 550, 152939.	1.3	11
198	NASA's IMP 8 Spacecraft. , 1999, , 145-154.		11

#	Article	IF	CITATIONS
199	Microstructural development in PWA-1480 electron beam welds — an atom probe field ion microscopy study. Applied Surface Science, 1996, 94-95, 280-287.	3.1	10
200	High strength weld metal design through nanoscale copper precipitation. Materials & Design, 2013, 50, 962-967.	5.1	10
201	Sintering Kinetics of Inkjet-Printed Conductive Silver Lines on Insulating Plastic Substrate. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1542-1547.	1.0	10
202	Investigating the Linear Thermal Expansion of Additively Manufactured Multi-Material Joining between Invar and Steel. Materials, 2020, 13, 5683.	1.3	10
203	Correlation of Local Constitutive Properties to Global Mechanical Performance of Advanced High-Strength Steel Spot Welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2209-2221.	1.1	10
204	Role of thermo-mechanical gyrations on the $\hat{l}\pm /\hat{l}^2$ interface stability in a Ti6Al4V AM alloy. Scripta Materialia, 2021, 204, 114134.	2.6	10
205	Atomic Partitioning of Ruthenium in Ni-Based Superalloys. , 2004, , .		10
206	The spread of technological innovations: effects of psychology, culture and policy interventions. Royal Society Open Science, 2022, 9, .	1.1	10
207	Atom probe field ion microscopy of type 308 CRE stainless steel welds. Applied Surface Science, 1995, 87-88, 207-215.	3.1	9
208	Solidification and microstructure modelling of welds in aluminium alloys 5754 and 6111. Science and Technology of Welding and Joining, 2001, 6, 31-40.	1.5	9
209	An integrated manifold learning approach for high-dimensional data feature extractions and its applications to online process monitoring of additive manufacturing. IISE Transactions, 0, , 1-21.	1.6	9
210	Microstructure-property gradients in Ni-based superalloy (Inconel 738) additively manufactured via electron beam powder bed fusion. Additive Manufacturing, 2021, 46, 102121.	1.7	9
211	Enfoque de g $ ilde{A}$ ©nero en el acuerdo de paz entre el Gobierno Colombiano y las FARC-EP: transiciones necesarias para su implementaci $ ilde{A}^3$ n. Araucaria, 2018, , 389-414.	0.1	9
212	Microstructure Development in Single Crystal Welds. Materials Science Forum, 2003, 426-432, 4123-4128.	0.3	8
213	Weld Metal Toughness: Sources of Variation. , 2010, , .		8
214	Strain-Based Assessment and Modeling for Low-Distortion Welding Procedure. Materials and Manufacturing Processes, 2012, 27, 943-948.	2.7	8
215	Microstructural Evolution of Graded Transition Joints. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2201-2217.	1.1	8
216	Defect Characterization Through Automated Laser Track Trace Identification in SLM Processes Using Laser Profilometer Data. Journal of Materials Engineering and Performance, 2019, 28, 717-727.	1.2	8

#	Article	IF	CITATIONS
217	Multi-solution nature of topology optimization and its application in design for additive manufacturing. Rapid Prototyping Journal, 2019, 25, 1475-1481.	1.6	8
218	On the formation of spherical metastable BCC single crystal spatter particles during laser powder bed fusion. Materialia, 2020, 9, 100584.	1.3	8
219	Assessing Sperm Quality in Stingless Bees. Sociobiology, 2015, 61, .	0.2	8
220	Toward Process-Based Quality through a Fundamental Understanding of Weld Microstructural Evolution. Welding Journal, 2018, 97, 1-16.	0.9	8
221	Dynamic phase transformations in additively manufactured Ti-6Al-4V during thermo-mechanical gyrations. Materialia, 2020, 14, 100883.	1.3	7
222	Mechanical Properties of New Grades of FE-3Cr-W Alloys. , 2004, , 97.		6
223	Investigation of heat affected zone softening in armour steels Part 2 – Mechanical and microstructure heterogeneity. Science and Technology of Welding and Joining, 2013, 18, 253-260.	1.5	6
224	Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural Use. , 2018, , .		6
225	Progress in the Processing and Understanding of Alloy 718 Fabricated Through Powder Bed Additive Manufacturing Processes. Minerals, Metals and Materials Series, 2018, , 69-88.	0.3	6
226	Towards process consistency and <i>in-situ</i> evaluation of porosity during laser powder bed additive manufacturing. Science and Technology of Welding and Joining, 2020, 25, 679-689.	1.5	6
227	Introduction to Integrated Weld Modeling. , 2010, , 411-431.		6
228	Application of Optical and Other Advanced Characterization Techniques to Understand Weld Microstructures. Microscopy and Microanalysis, 2003, 9, 42-43.	0.2	5
229	A microstructure model for laser processing of Ti-6Al-4V. , 2005, , .		5
230	Design of Graded Transition Joints Through Thermodynamic and Kinetic Modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2765-2783.	1.1	5
231	Welding of nickel base superalloy single crystals. Science and Technology of Welding and Joining, 1997, 2, 79-88.	1.5	5
232	Atomic Level Characterization of Precipitation in Alloy 718., 2001,,.		5
233	Tailoring plasticity mechanisms in compositionally graded hierarchical steels fabricated using additive manufacturing. Scientific Reports, 2021, 11, 20112.	1.6	5
234	In-situ characterization of $\hat{i}^3/\hat{i}^3\hat{a}\in 2$ lattice stability in a nickel-base superalloy by neutron diffraction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1551-1552.	1.1	4

#	Article	IF	Citations
235	Weldability Evaluation of a Cu-Bearing High-Strength Blast-Resistant Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 4032-4044.	1.1	4
236	Microstructural Investigations in Metals Using Atom Probe Tomography with a Novel Specimen-Electrode Geometry. Jom, 2018, 70, 1776-1784.	0.9	4
237	Characterization of Additive Manufacturing for Process Tubing. Jom, 2019, 71, 1095-1104.	0.9	4
238	Heterogeneous creep deformation behavior of functionally graded transition joints (GTJs). Welding in the World, Le Soudage Dans Le Monde, 2021, 65, 1633-1644.	1.3	4
239	Heterogeneity and Solidification Pathways in Additively Manufactured 316L Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3321-3340.	1.1	4
240	APFIM studies of some aluminum alloys. Applied Surface Science, 1993, 67, 361-367.	3.1	3
241	High Resolution Analysis of Elemental Partitioning in Nickel-Base Superalloy Welds Using Atom Probe Field Ion Microscopy. Microscopy and Microanalysis, 1998, 4, 94-95.	0.2	3
242	Atom probe field ion microscopy investigation of boron containing martensitic 9 pct chromium steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 975-984.	1.1	3
243	Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation. AIP Conference Proceedings, 2004, , .	0.3	3
244	In-Situ observations of oxidation and phase stability in cast nickel-based intermetallic alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 195-205.	1.1	3
245	Comparison of various additive manufacturing technologies. , 2019, , 55-76.		3
246	Online Software Tool for Predicting Weld Residual Stress and Distortion. , 2008, , .		2
247	Advanced characterisation techniques to understand welded structures. Science and Technology of Welding and Joining, $2011, 16, 1-2$.	1.5	2
248	Understanding the thermal sciences in the electron beam melting process through in-situ process monitoring. Proceedings of SPIE, 2017, , .	0.8	2
249	Design for metal additive manufacturing. , 2019, , 193-244.		2
250	Cascading phase transformations in high carbon steel resulting in the formation of inverse bainite: An atomic scale investigation. Scientific Reports, 2019, 9, 5597.	1.6	2
251	The Effect of Beam Scan Strategies on the Microstructure of EBM Additively Manufactured Inconel 738. Microscopy and Microanalysis, 2020, 26, 2940-2941.	0.2	2
252	Uncertainties in Finite Element Analysis of Yield Point Phenomena in Advanced High-Strength Steel Spot Welds. Journal of Materials Engineering and Performance, 2020, 29, 1272-1281.	1.2	2

#	Article	IF	Citations
253	New model for prediction of ferrite number of stainless steel welds. Science and Technology of Welding and Joining, 1997, 2, 279-285.	1.5	2
254	Application of Atom Probe Microanalysis for Understanding Microstructure Evolution in Nickel Base Superalloy Welds. Microscopy and Microanalysis, 2000, 6, 350-351.	0.2	1
255	Using Resistance Heating to Create Full-Scale API RP 2Z CTOD Samples. , 2011, , .		1
256	Grain Structure Refinement in Nickel Alloy Welds by Magnetic Arc Stirring. , 2011, , .		1
257	Application of synchrotron and neutron scattering techniques for tracking phase transformations in steels., 2012,, 588-633.		1
258	In-situ TEM Heating Experiment to Study Effects of Cyclic Thermal Gradients on Ti-6Al-4V under Additive Manufacturing Growth Conditions. Microscopy and Microanalysis, 2018, 24, 1932-1933.	0.2	1
259	Microstructure and properties of additive manufacturing builds. , 2019, , 93-143.		1
260	Qualification for metal additive manufacturing. , 2019, , 245-307.		1
261	In Situ Phase Transformation Study in Fine Grained Heat Affected Zone of Grade 91 Steels., 2014,, 29-49.		1
262	Coarsening of oxide inclusions in low alloy steel welds. Science and Technology of Welding and Joining, 1996, 1, 17-27.	1.5	1
263	Analysis of hard particle retention in laser melt pools. , 2000, , .		1
264	Investigation of Weld Crack Mitigation Techniques with Advanced Numerical Modeling and Experiment $\hat{a} \in \text{Summary.}$, 2011, , 353-365.		1
265	Establishing W-based Friction Stir Welding Tool Life for Thick Section Steel Applications. , 2013, , 107-116.		1
266	The use of reactive gas shielding for production of hard coatings by laser surface alloying. , 2004, , .		0
267	Improvement of Creep Performance of Creep Strength Enhanced Ferritic (CSEF) Steel Weldments Through Non-Standard Heat Treatments. , 2014, , .		0
268	Graded Microstructure of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.	0.2	0
269	Quantitative Study on the Effect of Thermal Gradients on the Microstructure of Additively Manufactured Ti-6Al-4V Builds. Microscopy and Microanalysis, 2019, 25, 2598-2599.	0.2	0
270	Metal additive manufacturing process modeling and simulation., 2019,, 145-191.		0

#	Article	IF	CITATIONS
271	Tools for Alloy Design. , 2022, , 245-262.		0
272	Thermo-Mechanical Processing. , 2022, , 27-38.		0
273	Selection of Appropriate Manufacturing Processes. , 2022, , 3-12.		0
274	Materials modeling for advanced coating systems. , 2002, , .		0
275	Ex-situ and In-situ Techniques for Visualization of Weld Microstructure. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2011, 80, 64-69.	0.0	0