Piero Manfredi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408587/publications.pdf

Version: 2024-02-01

74 papers 2,751 citations

304743

22

h-index

189892 50 g-index

77 all docs

77 docs citations

times ranked

77

2718 citing authors

#	Article	IF	CITATIONS
1	COVIDâ€19 epidemic and mitigation policies: Positive and normative analyses in a neoclassical growth model. Journal of Public Economic Theory, 2022, 24, 968-992.	1.1	19
2	Economic development with deadly communicable diseases and public prevention. Journal of Public Economic Theory, 2022, 24, 912-943.	1.1	7
3	Multiple epidemic waves as the outcome of stochastic SIR epidemics with behavioral responses: a hybrid modeling approach. Nonlinear Dynamics, 2022, , 1-40.	5.2	3
4	Diffusion of Solar PV Energy in the UK: A Comparison of Sectoral Patterns. Forecasting, 2022, 4, 456-476.	2.8	6
5	Behavioral SIR models with incidence-based social-distancing. Chaos, Solitons and Fractals, 2022, 159, 112072.	5.1	8
6	A PARSIMONIOUS MODEL OF LONGEVITY, FERTILITY, HIV TRANSMISSION AND DEVELOPMENT. Macroeconomic Dynamics, 2021, 25, 1155-1174.	0.7	6
7	The Tragedy of the Commons as a Prisoner's Dilemma. Its Relevance for Sustainability Games. Sustainability, 2021, 13, 8125.	3.2	7
8	Evidence of disorientation towards immunization on online social media after contrasting political communication on vaccines. Results from an analysis of Twitter data in Italy. PLoS ONE, 2021, 16, e0253569.	2.5	7
9	Dynamics of partially mitigated multi-phasic epidemics at low susceptible depletion: phases of COVID-19 control in Italy as case study. Mathematical Biosciences, 2021, 340, 108671.	1.9	2
10	The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?. Renewable and Sustainable Energy Reviews, 2021, 152, 111673.	16.4	16
11	Individual's daily behaviour and intergenerational mixing in different social contexts of Kenya. Scientific Reports, 2021, 11, 21589.	3.3	6
12	Population dynamics and demography of Covid-19. Introduction. Genus, 2021, 77, 36.	1.7	8
13	Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease. Physica A: Statistical Mechanics and Its Applications, 2020, 545, 123773.	2.6	15
14	What do adoption patterns of solar panels observed so far tell about governments' incentive? Insights from diffusion models. Technological Forecasting and Social Change, 2020, 160, 120240.	11.6	16
15	General methods for measuring and comparing medical interventions in childbirth: a framework. BMC Pregnancy and Childbirth, 2020, 20, 279.	2.4	9
16	A contribution to the theory of economic development and the demographic transition: fertility reversal under the HIV epidemic. Journal of Demographic Economics, 2020, 86, 125-155.	1.2	9
17	Spatio-temporal games of voluntary vaccination in the absence of the infection: the interplay of local versus non-local information about vaccine adverse events. Mathematical Biosciences and Engineering, 2020, 17, 1090-1131.	1.9	4
18	The Interplay Between Voluntary Vaccination and Reduction of Risky Behavior: A General Behavior-Implicit SIR Model for Vaccine Preventable Infections. SEMA SIMAI Springer Series, 2020, , 185-203.	0.7	3

#	Article	IF	CITATIONS
19	Models for optimally controlling varicella and herpes zoster by varicella vaccination: a comparative study. Medical and Biological Engineering and Computing, 2019, 57, 1121-1132.	2.8	2
20	Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases. Journal of Mathematical Biology, 2019, 78, 1089-1113.	1.9	14
21	Modeling the impact of combined vaccination programs against varicella and herpes zoster in Norway. Vaccine, 2018, 36, 1116-1125.	3.8	12
22	The potential impact of the demographic transition in the Senegal-Gambia region of sub-Saharan Africa on the burden of infectious disease and its potential synergies with control programmes: the case of hepatitis B. BMC Medicine, 2018, 16, 118.	5.5	10
23	The natural history of varicella zoster virus infection in Norway: Further insights on exogenous boosting and progressive immunity to herpes zoster. PLoS ONE, 2017, 12, e0176845.	2.5	19
24	Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe. PLoS ONE, 2017, 12, e0170459.	2.5	84
25	Bistable Endemic States in a Susceptible-Infectious-Susceptible Model with Behavior-Dependent Vaccination. , 2016, , 341-354.		5
26	Statistical physics of vaccination. Physics Reports, 2016, 664, 1-113.	25.6	734
27	An improved model life table for the Indian River Lagoon bottlenose dolphin population and remarks on early mortality. Marine Mammal Science, 2016, 32, 1522-1528.	1.8	1
28	Perspectives on optimal control of varicella and herpes zoster by mass routine varicella vaccination. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160054.	2.6	16
29	The Epidemiology of Herpes Zoster After Varicella Immunization Under Different Biological Hypotheses: Perspectives From Mathematical Modeling. American Journal of Epidemiology, 2016, 183, 765-773.	3.4	30
30	Dynamic behaviour of a discrete-time SIR model with information dependent vaccine uptake. Journal of Difference Equations and Applications, 2016, 22, 485-512.	1.1	5
31	Estimating Age-Specific Immunity and Force of Infection of Varicella Zoster Virus in Norway Using Mixture Models. PLoS ONE, 2016, 11, e0163636.	2.5	14
32	The impact of demographic changes on the epidemiology of herpes zoster: Spain as a case study. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142509.	2.6	30
33	The Impact of HPV Female Immunization in Italy: Model Based Predictions. PLoS ONE, 2014, 9, e91698.	2.5	8
34	The relative importance of frequency of contacts and duration of exposure for the spread of directly transmitted infections. Biostatistics, 2014, 15, 470-483.	1.5	36
35	Neoclassical growth with endogenous age distribution. Poverty vs low-fertility traps as steady states of demographic transitions. Journal of Population Economics, 2013, 26, 1457-1484.	5.6	11
36	Quantifying the re-exposure process to an infectious agent. Measles and Varicella as examples. Mathematical Biosciences, 2013, 245, 31-39.	1.9	3

3

#	Article	IF	CITATIONS
37	Behavioral Epidemiology of Infectious Diseases: An Overview. , 2013, , 1-19.		20
38	Hope-Simpson's Progressive Immunity Hypothesis as a Possible Explanation for Herpes Zoster Incidence Data. American Journal of Epidemiology, 2013, 177, 1134-1142.	3.4	35
39	Perspectives on the Impact of Varicella Immunization on Herpes Zoster. A Model-Based Evaluation from Three European Countries. PLoS ONE, 2013, 8, e60732.	2.5	64
40	Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread. PLoS Computational Biology, 2012, 8, e1002673.	3.2	166
41	Towards measles elimination in Italy: Monitoring herd immunity by Bayesian mixture modelling of serological data. Epidemics, 2012, 4, 124-131.	3.0	14
42	The Interplay of Public Intervention and Private Choices in Determining the Outcome of Vaccination Programmes. PLoS ONE, 2012, 7, e45653.	2.5	54
43	Epidemiology and transmission dynamics of the 1918–19 pandemic influenza in Florence, Italy. Vaccine, 2011, 29, B27-B32.	3.8	7
44	Lifeâ€history tables of the Mediterranean fin whale from stranding data. Marine Ecology, 2011, 32, 1-9.	1.1	26
45	Spatiotemporal dynamics of viral hepatitis A in Italy. Theoretical Population Biology, 2011, 79, 1-11.	1.1	6
46	The impact of vaccine side effects on the natural history of immunization programmes: An imitation-game approach. Journal of Theoretical Biology, 2011, 273, 63-71.	1.7	65
47	Endogenous Age Structure in Descriptive Macroeconomic Growth Models: A General Framework and Some Steady State Analysis. , 2010, , .		0
48	Vaccine demand driven by vaccine side effects: Dynamic implications for SIR diseases. Journal of Theoretical Biology, 2010, 264, 237-252.	1.7	42
49	IS LABOUR MARKET FLEXIBILITY DESIRABLE OR HARMFUL? A FURTHER DYNAMIC PERSPECTIVE. Metroeconomica, 2010, 61, 257-266.	1.0	3
50	Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data. PLoS Computational Biology, 2010, 6, e1001021.	3.2	69
51	Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. Journal of Theoretical Biology, 2009, 256, 473-478.	1.7	122
52	Neoclassical production theory and growth with unemployment: The stability issue revisited. Structural Change and Economic Dynamics, 2009, 20, 126-135.	4.5	2
53	Optimal vaccination choice, vaccination games, and rational exemption: An appraisal. Vaccine, 2009, 28, 98-109.	3.8	56
54	Coinfection can trigger multiple pandemic waves. Journal of Theoretical Biology, 2008, 254, 499-507.	1.7	46

#	Article	IF	Citations
55	Instability and Sustained Oscillations in Neo-Classical Growth Models with Unemployment. , 2008, , 321-342.		0
56	Basic mathematical models for the temporal dynamics of HAV in medium-endemicity Italian areas. Vaccine, 2008, 26, 1697-1707.	3.8	26
57	Using Time-Use Data to Parameterize Models for the Spread of Close-Contact Infectious Diseases. American Journal of Epidemiology, 2008, 168, 1082-1090.	3.4	113
58	Fatal SIR diseases and rational exemption to vaccination. Mathematical Medicine and Biology, 2008, 25, 337-357.	1.2	42
59	Mitigation Measures for Pandemic Influenza in Italy: An Individual Based Model Considering Different Scenarios. PLoS ONE, 2008, 3, e1790.	2.5	143
60	Neoclassical labour market dynamics, chaos and the real wage Phillips curve. Journal of Economic Behavior and Organization, 2007, 62, 470-483.	2.0	10
61	Demographic Change and Immigration in Age-structured Epidemic Models. Mathematical Population Studies, 2007, 14, 169-191.	2.2	14
62	Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theoretical Population Biology, 2007, 71, 301-317.	1.1	177
63	Chaotic business cycles and fiscal policy: An IS-LM model with distributed tax collection lags. Chaos, Solitons and Fractals, 2007, 32, 736-744.	5.1	85
64	The complex effects of demographic heterogeneity on the interaction between the economy and population. Structural Change and Economic Dynamics, 2006, 17, 148-173.	4.5	9
65	DEMOGRAPHY IN MACROECONOMIC MODELS: WHEN LABOUR SUPPLY MATTERS FOR ECONOMIC CYCLES. Metroeconomica, 2006, 57, 536-563.	1.0	10
66	The pre-vaccination regional epidemiological landscape of measles in Italy: contact patterns, effort needed for eradication, and comparison with other regions of Europe. Population Health Metrics, 2005, 3, 1.	2.7	15
67	Ageing populations and childhood infections: the potential impact on epidemic patterns and morbidity. International Journal of Epidemiology, 2004, 33, 566-572.	1.9	17
68	Cycles in dynamic economic modelling. Economic Modelling, 2004, 21, 573-594.	3.8	19
69	Realistic population dynamics in epidemiological models: the impact of population decline on the dynamics of childhood infectious diseases. Mathematical Biosciences, 2004, 192, 153-175.	1.9	21
70	Heterogeneity in regional notification patterns and its impact on aggregate national case notification data: the example of measles in Italy. BMC Public Health, 2003, 3, 23.	2.9	18
71	Population, Unemployment and Economic Growth Cycles: A Further Explanatory Perspective. Metroeconomica, 2003, 54, 179-207.	1.0	15
72	Long-term Effects of the Efficiency Wage Hypothesis in Goodwin-type Economies. Metroeconomica, 2000, 51, 454-481.	1.0	6

#	Article	lF	CITATIONS
73	Long-term Effects of the Efficiency Wage Hypothesis in Goodwin-type Economies: A Reply. Metroeconomica, 2000, 51, 488-491.	1.0	2
74	Macroâ€demographic effects of the transition to adulthood: Multistate stable population theory and an application to Italy. Mathematical Population Studies, 2000, 9, 33-63.	2.2	18