Charles R Bradshaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4085007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering theÂliver lipid metabolic ground-state. Nature Communications, 2022, 13, 334.	5.8	28
2	Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus <i>Rhizophagus irregularis</i> . Genome Research, 2021, 31, 2290-2302.	2.4	19
3	Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription. Nature Communications, 2020, 11, 3491.	5.8	21
4	A direct role for SNX9 in the biogenesis of filopodia. Journal of Cell Biology, 2020, 219, .	2.3	9
5	Characteristics and homogeneity of N6-methylation in human genomes. Scientific Reports, 2019, 9, 5185.	1.6	13
6	Chromatin Accessibility Impacts Transcriptional Reprogramming in Oocytes. Cell Reports, 2018, 24, 304-311.	2.9	50
7	Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways. Molecular Cell, 2017, 65, 873-884.e8.	4.5	38
8	Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biology Open, 2017, 6, 415-424.	0.6	39
9	H3K4 Methylation-Dependent Memory of Somatic Cell Identity Inhibits Reprogramming and Development of Nuclear Transfer Embryos. Cell Stem Cell, 2017, 21, 135-143.e6.	5.2	86
10	Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature Medicine, 2017, 23, 1424-1435.	15.2	905
11	Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Research, 2016, 26, 1034-1046.	2.4	109
12	Mechanical cell competition kills cells via induction of lethal p53 levels. Nature Communications, 2016, 7, 11373.	5.8	162
13	Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nature Structural and Molecular Biology, 2016, 23, 24-30.	3.6	215
14	Identification of Methylated Deoxyadenosines in Genomic DNA by dA6m DNA Immunoprecipitation. Bio-protocol, 2016, 6, .	0.2	10
15	Histone H3 lysine 9 trimethylation is required for suppressing the expression of an embryonically activated retrotransposon in Xenopus laevis. Scientific Reports, 2015, 5, 14236.	1.6	8
16	A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell, 2015, 161, 1453-1467.	13.5	556
17	Hierarchical Molecular Events Driven by Oocyte-Specific Factors Lead to Rapid and Extensive Reprogramming. Molecular Cell, 2014, 55, 524-536.	4.5	39
18	CDK phosphorylation of SLD-2 is required for replication initiation and germline development in <i>C. elegans</i> . Journal of Cell Biology, 2014, 204, 507-522.	2.3	21

CHARLES R BRADSHAW

#	Article	IF	CITATIONS
19	Nuclear Wave1 Is Required for Reprogramming Transcription in Oocytes and for Normal Development. Science, 2013, 341, 1002-1005.	6.0	82
20	Titration of Four Replication Factors Is Essential for the <i>Xenopus laevis</i> Midblastula Transition. Science, 2013, 341, 893-896.	6.0	201
21	Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nature Cell Biology, 2012, 14, 666-676.	4.6	96
22	Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nature Chemical Biology, 2012, 8, 301-310.	3.9	576
23	Replication stress induces 53BP1-containing OPT domains in G1 cells. Journal of Cell Biology, 2011, 193, 97-108.	2.3	284
24	Systems survey of endocytosis by multiparametric image analysis. Nature, 2010, 464, 243-249.	13.7	407
25	ProFAT: a web-based tool for the functional annotation of protein sequences. BMC Bioinformatics, 2006, 7, 466.	1.2	9