List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4084978/publications.pdf

Version: 2024-02-01

Μαρδα Ιεςδος δανισμός

#	Article	IF	CITATIONS
1	Effect of chain extenders on the hydrolytic degradation of soybean polyurethane. Journal of Applied Polymer Science, 2022, 139, .	1.3	4
2	Effect of chain extender on the morphology, thermal, viscoelastic, and dielectric behavior of soybean polyurethane. Journal of Applied Polymer Science, 2021, 138, 50709.	1.3	12
3	Electrochemical Synthesis of an Organic Thermoelectric Power Generator. ACS Applied Materials & Interfaces, 2020, 12, 46348-46356.	4.0	21
4	Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry, 2020, 134, 107536.	2.4	23
5	Exploring the role of lignin structure in molecular dynamics of lignin/bio-derived thermoplastic elastomer polyurethane blends. International Journal of Biological Macromolecules, 2020, 158, 1369-1379.	3.6	68
6	Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites. Polymers, 2019, 11, 1083.	2.0	15
7	Renewable polyol obtained by microwave-assisted alcoholysis of epoxidized soybean oil: Preparation, thermal properties and relaxation process. Journal of Molecular Liquids, 2019, 285, 136-145.	2.3	21
8	Molecular Dynamics of Functional Azide-Containing Acrylic Films. Polymers, 2018, 10, 859.	2.0	2
9	Conducting PEDOT Nanoparticles: Controlling Colloidal Stability and Electrical Properties. Journal of Physical Chemistry C, 2018, 122, 19197-19203.	1.5	17
10	Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor. Green Chemistry, 2018, 20, 4461-4472.	4.6	122
11	Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay. Carbohydrate Polymers, 2017, 176, 117-126.	5.1	13
12	Thermal and dielectric characterization of multi-walled carbon nanotubesâ^'thermoplastic polyurethanes composites. Polymer Science - Series A, 2017, 59, 543-553.	0.4	0
13	Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition. Carbohydrate Polymers, 2017, 157, 353-360.	5.1	28
14	Controlling dielectrical properties of polymer blends through defined PEDOT nanostructures. RSC Advances, 2016, 6, 62024-62030.	1.7	8
15	Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of <i>cis</i> - and <i>trans</i> -2-phenyl-5-hydroxymethyl-1,3-dioxane. Physical Review E, 2015, 92, 042307.	0.8	4
16	Study of the dielectric relaxation of poly(phenylpropyl acrylate) and poly(phenylpropyl methacrylate): effect of slight differences in chemical structure. Polymer International, 2015, 64, 1733-1740.	1.6	3
17	Thermal and dielectric properties of polycarbonatediol polyurethane. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
18	The effect of cross-linking on the molecular dynamics of the segmental and β Johari–Goldstein processes in polyvinylpyrrolidone-based copolymers. Soft Matter, 2015, 11, 7171-7180.	1.2	2

#	Article	IF	CITATIONS
19	Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites. Polymer International, 2015, 64, 284-292.	1.6	30
20	Electrical conductivity of natural rubber–cellulose II nanocomposites. Journal of Non-Crystalline Solids, 2014, 405, 180-187.	1.5	19
21	Effect of the Dipole–Dipole Interactions in the Molecular Dynamics of Poly(vinylpyrrolidone)-Based Copolymers. Macromolecules, 2014, 47, 5334-5346.	2.2	25
22	Evaluation of natural rubber specific heat capacity at high pressures from DSC experimental data at atmospheric pressure. Journal of Applied Polymer Science, 2013, 128, 2269-2272.	1.3	6
23	Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-ethoxyethyl) Tj ETQq1 1 0.784314 rg	BT /Overlo	ock 10 Tf 50
24	An experimental study of dynamic behaviour of graphite–polycarbonatediol polyurethane composites for protective coatings. Applied Surface Science, 2013, 275, 295-302.	3.1	21
25	Conductivity and Time–Temperature Correspondence in Polar Viscoelastic Liquids. Macromolecules, 2013, 46, 3167-3175.	2.2	4
26	Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy. Journal Physics D: Applied Physics, 2013, 46, 295304.	1.3	13
27	Study of the Thermal, Dielectric and Mechanical Properties of Poly(Methyl) Tj ETQq1 1 0.784314 rgBT /Overlock Engineering, 2012, 44, 1534-1538.	10 Tf 50 4 1.2	27 Td (Meth 0
28	Effect of Cross-Linking on the Molecular Motions and Nanodomains Segregation in Polymethacrylates Containing Aliphatic Alcohol Ether Residues. Macromolecules, 2012, 45, 3571-3580.	2.2	18
29	Contributions of Dipolar Relaxation Processes and Ionic Transport to the Response of Liquids to Electrical Perturbation Fields. Journal of Physical Chemistry B, 2011, 115, 5730-5740.	1.2	3
30	Dielectric spectroscopy of natural rubber-cellulose II nanocomposites. Journal of Non-Crystalline Solids, 2011, 357, 598-604.	1.5	26
31	Instability of incompressible cylinder rubber tubes under radial electric fields. European Physical Journal E, 2010, 32, 183-190.	0.7	5
32	Biaxial stretching of rubber plates under normal electric fields: Bifurcation in rubber plates. , 2010, , .		0
33	Dynamics of Natural Rubber as a Function of Frequency, Temperature, and Pressure. A Dielectric Spectroscopy Investigation. Macromolecules, 2010, 43, 5094-5102.	2.2	31
34	Dipolar and Ionic Relaxations of Polymers Containing Polar Conformationally Versatile Side Chains. Macromolecules, 2010, 43, 5723-5733.	2.2	12
35	Response to Comment on "On electromechanical stability of dielectric elastomers―[Appl. Phys. Lett. 94, 096101 (2009)]. Applied Physics Letters, 2009, 94, 096102.	1.5	6
36	Fractional Fokker–Planck equation approach for the interconversion between dielectric and mechanical measurements. Journal of Applied Physics, 2009, 106, .	1.1	5

#	Article	IF	CITATIONS
37	A quantum mechanical study on polymer flexibility: Extended model from monomer to tetramer of 2- and 4-bromostyrenes. Polymer, 2009, 50, 317-327.	1.8	9
38	Effect of an electric field on the deformation of incompressible rubbers: Bifurcation phenomena. Journal of Electrostatics, 2009, 67, 158-166.	1.0	26
39	Effect of an electric field on the bifurcation of a biaxially stretched incompressible slab rubber. European Physical Journal E, 2009, 30, 417-26.	0.7	30
40	Analysis of the influence of rubber infill morphology on the mechanical performance of artificial turf surfaces for soccer. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2009, 223, 1-9.	0.4	15
41	Water sorption by poly(tetrahydrofurfuril methacrylate)'s. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 109-120.	2.4	1
42	On electromechanical stability of dielectric elastomers. Applied Physics Letters, 2008, 93, .	1.5	79
43	Influence of structural chemical characteristics on polymer chain dynamics. Journal of Chemical Physics, 2008, 129, 054903.	1.2	9
44	Retardation time spectra computed from complex compliance functions. Journal of Chemical Physics, 2008, 129, 104513.	1.2	7
45	DIELECTRIC RELAXATIONAL BEHAVIOUR OF POLY (DIMETHOXYBENZYL METHACRYLATE)S ISOMERS. AIP Conference Proceedings, 2008, , .	0.3	Ο
46	INTERCONVERSION MODEL FOR MECHANICAL AND DIELECTRIC $\hat{1}\pm$ -RELAXATIONS MEASUREMENTS. AIP Conference Proceedings, 2008, , .	0.3	0
47	Characterization of low temperature dielectric processes in Poly(dicyclohexyl-itaconate). Journal of Non-Crystalline Solids, 2007, 353, 119-129.	1.5	О
48	Relaxational behavior of poly(4-tetrahydropyranyl) methacrylate. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3135-3147.	2.4	2
49	Comparative study of poly(2,3 and 4 methyl cyclohexyl methacrylate)s. Dielectric relaxation spectroscopy (DRS). Polymer, 2005, 46, 8028-8033.	1.8	7
50	Comparative study of localized side group in poly(2,3 and 4 methyl cyclohexyl methacrylate)s. TSDC measurements. Polymer, 2005, 46, 11351-11358.	1.8	5
51	Interconversion of mechanical and dielectrical relaxation measurements for dicyclohexylmethyl-2-methyl succinate. Physical Review E, 2005, 72, 051505.	0.8	8
52	A relaxational and conductive study on two poly(ether imide)s. Polymer International, 2004, 53, 1368-1377.	1.6	28
53	Amorphous-smectic glassy main chain LCPs. II. Dielectric study of the glass transition. Polymer, 2004, 45, 1533-1543.	1.8	21
54	Dynamic mechanical and dielectric relaxations in poly(di-n-chloroalkylitaconates). Polymer, 2004, 45, 1845-1855.	1.8	13

4

#	Article	IF	CITATIONS
55	Sublinear dispersive conductivity in polymethyl methacrylate at temperatures above the glass transition. Polymer, 2004, 45, 2737-2742.	1.8	14
56	Dielectric relaxational behavior of poly(diitaconate)s containing cyclic rings in the side chain. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1059-1069.	2.4	3
57	Dielectric relaxations in polymers containing dioxacyclohexane rings by thermostimulated depolarization currents. Macromolecular Symposia, 2003, 191, 177-190.	0.4	1
58	Properties of the first and second order memory functions of dielectric relaxation. Journal of Non-Crystalline Solids, 2002, 307-310, 288-295.	1.5	2
59	Study of space charge relaxation in PMMA at high temperatures by dynamic electrical analysis. Polymer, 2001, 42, 1647-1651.	1.8	29
60	Dynamic mechanical and dielectric relaxations of poly(difluorobenzyl methacrylates). Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2179-2188.	2.4	6
61	Comparative study of amorphous and partially crystalline poly(ethylene-2,6-naphthalene) Tj ETQq1 1 0.784314	rgBT /Over 1.8	locန္ 10 Tf 50
62	Memory function for dielectric relaxation. Journal of Chemical Physics, 2000, 113, 11258-11263.	1.2	5
63	Relaxation behavior, at very low frequencies, of glassy polymers containing aliphatic-aromatic side groups in their structures. Journal of Applied Physics, 2000, 88, 1593-1599.	1.1	2
64	Space charge relaxation in polyetherimides by the electric modulus formalism. Journal of Applied Physics, 2000, 88, 4807.	1.1	28
65	Relaxational study of poly(ethylene-2,6-naphthalene dicarboxylate) by t.s.d.c., d.e.a. and d.m.a Polymer, 1999, 40, 1181-1190.	1.8	46
66	Relaxation and conformational studies on thermotropic side chains liquid crystalline polymers. Journal of Molecular Structure, 1999, 479, 135-147.	1.8	3
67	Relaxational Study of Poly(2-chlorocyclohexyl methacrylate) by Thermally Stimulated Current, Dielectric, and Dynamic Mechanical Spectroscopy. Macromolecules, 1999, 32, 3457-3463.	2.2	15
68	Effects of Carbon-sp3 Bridging on the Electronic Properties of Oligothiophenes. Synthetic Metals, 1999, 101, 602-603.	2.1	8
69	Dynamic mechanical and dielectric relaxations in poly(pentachlorophenyl methacrylate). Macromolecular Chemistry and Physics, 1998, 199, 575-581.	1.1	5
70	Comparative study of mechanical and electrical relaxations in poly(etherimide). Part 1. Polymer International, 1998, 46, 11-19.	1.6	36
71	Comparative study of mechanical and electrical relaxations in poly(etherimide). Part 2. Polymer International, 1998, 46, 20-28.	1.6	21
72	Physical ageing studies in polyetherimide ULTEM 1000. Polymer International, 1998, 46, 29-32.	1.6	31

#	Article	IF	CITATIONS
73	Role of the second-order memory function on the dielectric relaxation. Journal of Chemical Physics, 1998, 109, 9057-9061.	1.2	7
74	Comparative study of the relaxation behavior at very low frequencies of acrylate polymers with pendant 1,3-dioxane rings in their structure. Journal of Applied Physics, 1998, 84, 4436-4442.	1.1	7
75	Relaxation behavior of semiflexible polymers at very low frequencies. Journal of Applied Physics, 1997, 81, 3685-3691.	1.1	10
76	The thermally induced phase transition in 2,3,7,8â€ŧetramethoxythianthrene. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1889-1895.	0.9	1
77	Mechanical and dielectric properties of bulky side chain poly(methacrylates). Analysis of the low frequency phenomena. 1: Poly(5-indanyl methacrylate). Polymer Engineering and Science, 1997, 37, 882-887.	1.5	4
78	Dielectric and molecular mechanics study of the \hat{I}^3 relaxations of poly(chloroethyl methacrylate) and poly(chloropropyl methacrylate). Polymer, 1997, 38, 3805-3810.	1.8	6
79	Dynamic mechanical and dielectric relaxations in poly(monoethylphenyl itaconate). Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2749-2756.	2.4	7
80	Structure, dielectric relaxation and electrical conductivity of 2,3,7,8-tetramethoxychalcogenanthrene–2,3-dichloro-5,6-dicyano-l,4-benzoquinone 1 : 1 charge-transfer complexes. Journal of Materials Chemistry, 1996, 6, 547-553.	6.7	3
81	Dielectric Relaxation in Chlorinated Polyethylene-Polypropylene Copolymers. Polymer International, 1996, 41, 337-343.	1.6	4
82	Viscoelastic relaxation phenomena in poly(mono-n-alkyl itaconates). Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 261-266.	2.4	6
83	Biparabolic model to represent dielectric relaxation data. Polymer, 1996, 37, 4003-4008.	1.8	9
84	Thermally stimulated depolarization current investigation of the relaxation behavior of polymers with chlorocyclohexyl side groups. Journal of Applied Physics, 1996, 80, 1047-1053.	1.1	8
85	Thermal effects on the structure and relaxation properties of poly(monocyclopentyl itaconate). Macromolecular Chemistry and Physics, 1995, 196, 3789-3796.	1.1	1
86	Analysis of the electric relaxation in acrylate polymers with rigid side groups. Journal of Applied Physics, 1995, 78, 1906-1913.	1.1	7
87	Conductivity contribution to dielectric loss of poly(monocyclopentyl itaconate). Macromolecular Rapid Communications, 1994, 15, 31-36.	2.0	4
88	Stability and synthetic pathways: novel routes to CaCuO2. Solid State Ionics, 1993, 66, 27-34.	1.3	3
89	Precursor-based synthetic pathways to nanometer NdNiO3â^'x particles. Solid State Ionics, 1993, 63-65, 52-59.	1.3	5
90	Fast synthesis of single-phased 110 K bismuth superconductor by freeze-drying of acetic precursors. Kinetic role of calcium and copper oxides. Solid State Ionics, 1993, 63-65, 872-882.	1.3	7

#	Article	IF	CITATIONS
91	Electrochemical oxidation of lanthanum cuprates. Physica C: Superconductivity and Its Applications, 1993, 216, 478-490.	0.6	27
92	Synthesis and characterization of NdNiO3 prepared by low temperature methods. Journal of Alloys and Compounds, 1992, 188, 170-173.	2.8	9
93	Structural and magnetic characterization of calcium copper formates, CaCu(HCOO)4 and Ca2Cu(HCOO)6: two new one-dimensional ferromagnetic bis(.muoxo-ligand)-bridged chains. Inorganic Chemistry, 1992, 31, 2915-2919.	1.9	31
94	A new improved synthesis of the 110 K bismuth superconducting phase: freeze-drying of acetic solutions. Materials Letters, 1992, 15, 149-155.	1.3	15
95	Submicrometer CaCuO2 and Ca2CuO3 particles from bimetallic formate precursors. Materials Letters, 1992, 12, 409-414.	1.3	10
96	Crystal and magnetic structure of Li2CuO2. Solid State Communications, 1990, 74, 779-784.	0.9	124
97	Thermal and magnetic properties of Bi2CuO4 (abstract). Journal of Applied Physics, 1990, 67, 5761-5761.	1.1	1
98	Crystal and magnetic structures of Bi2CuO4. Journal of Physics Condensed Matter, 1990, 2, 2205-2214.	0.7	42